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64Ni+64Ni fusion reaction calculated with the density-constrained
time-dependent Hartree-Fock formalism

A. S. Umar and V. E. Oberacker
Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

(Received 25 September 2007; revised manuscript received 24 April 2008; published 9 June 2008)

We study fusion reactions of the 64Ni+64Ni system using the density-constrained time-dependent Hartree-Fock
(TDHF) formalism. In this formalism the fusion barriers are directly obtained from TDHF dynamics. In addition,
we incorporate the entrance channel alignments of the slightly deformed (oblate) 64Ni nuclei resulting from
dynamical Coulomb excitation. We show that alignment leads to a fusion barrier distribution and alters the naive
picture for defining which energies are actually sub-barrier. We also show that core orientation effects could play
a significant role in fusion cross section calculations.
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I. INTRODUCTION

Radioactive ion-beam facilities enable us to study the
structure and reactions of exotic nuclei, in particular the
physics properties of the “terra incognita” of neutron-rich
isotopes [1]. One important aspect of these studies is a detailed
investigation of the heavy-ion fusion process of exotic nuclei.
Not only is this crucial for superheavy element formation,
but it will also lead to a better understanding of the effective
N -N interactions in neutron-rich nuclei and of enhanced
correlations present in these many-body systems.

Recently, fusion evaporation cross sections for the
64Ni+64Ni system have been measured down to the 10-nb
level [2]. This experiment confirmed and improved the earlier
data [3] for the same system and it extended the data to
extreme sub-barrier energies, thus providing a challenge for the
theoretical understanding of the fusion process between two
open-shell nuclei. The primary observation was a hindrance of
fusion in the 64Ni+64Ni system at extreme sub-barrier energies
in comparison to reactions involving other nickel isotopes
such as the 58Ni+58Ni system. Earlier coupled-channels
calculations [4,5] failed to reproduce the data at the extreme
sub-barrier energies.

Various hypotheses were developed for explaining the
fusion hindrance phenomenon. In Ref. [6] the hindrance was
attributed to the differing stiffness of nickel isotopes from
nuclear structure effects. An excellent coupled-channels fit to
the data was obtained by supplementing the effective N -N
force used in the double-folding potential with a repulsive
core to account for the nuclear incompressibility effects at
the nuclear overlap, thus leading to a shallow potential pocket.
However, Refs. [7,8] suggest that at such low energies the inner
turning point of the heavy-ion potential is smaller than the
touching point rt = R1 + R2. Thus the validity of the frozen-
density approximation used in Ref. [6] becomes questionable.
These authors have proposed a two-step model for fusion
in which the effects of neck formation are approximately
included [7].

The theoretical analysis of the fusion data generally
involves the determination of a phenomenological ion-ion
potential such as the Bass model [9,10], the proximity potential
[11–14], or potentials obtained via the double-folding method

[15–18]. Subsequently, the actual fusion cross section is calcu-
lated by either using barrier penetration models [10,17,19,20],
or the coupled-channel method [4,5,21–23]. The latter includes
various excitations of the target and/or projectile using the
coupled-channel formalism [4,23], as well as the inclusion of
neutron transfer, and can be consistently applied at energies
above and below the barrier [20]. Effectively, the inclusion
of each additional excitation leads to a modification of the
original inert core ion-ion potential, resulting in a series of
effective barriers. One common physical assumption used in
many of these calculations is the use of the frozen density
or the sudden approximation. In this approximation the
nuclear densities are unchanged during the computation of
the ion-ion potential as a function of the internuclear distance.
Furthermore, the coupled-channel approaches are based on
properties of low-lying collective states in the projectile
and target nuclei such as excitation energies and B(EL)
values, which are usually taken from experiment. These may
accurately represent the early stages of the collision process,
but the collective excitations are expected to change as the
two ions strongly interact. Although these methods provide
a useful and productive means for quantifying multitudinous
reaction data it is desirable to include dynamical effects and
make contact with the microscopic theories of nuclear structure
and reactions.

Recently, we have developed a microscopic approach for
calculating heavy-ion interaction potentials that incorporates
all of the dynamical entrance channel effects included in the
time-dependent Hartree-Fock (TDHF) description of the col-
lision process [24]. These effects include the neck formation,
particle exchange, internal excitations, and deformation effects
to all orders, as well as the effect of nuclear alignment for
deformed systems. The method is based on the TDHF evolu-
tion of the nuclear system coupled with density-constrained
Hartree-Fock calculations to obtain the ion-ion interaction
potential. Preliminary calculations for the 64Ni+132Sn system
highlighted the importance of dynamical deformation effects
[25,26]. Here we give a completed study of fusion cross
sections using this formalism.

In the next section we will summarize some theoretical
aspects of the density-constrained TDHF theory along with
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methods to incorporate dynamical alignment into our calcula-
tions, as well as the method used to calculate cross sections
from the resulting barriers. In Sec. III we present interesting
aspects of the reaction dynamics and compare our results with
experiment and other calculations. In Sec. IV we summarize
our conclusions.

II. THEORETICAL METHODS

A. Density-constrained TDHF method

For the calculations of dynamical potential barriers for
the 64Ni+64Ni system we have used the density-constrained
TDHF (DC-TDHF) method. Further details of the method can
be found in Ref. [24]; here we give a short overview.

The density constraint is a novel numerical method that
was developed in the mid 1980s [27,28] and was used to
provide a microscopic description of the formation of shape
resonances in light systems [28]. In this approach the TDHF
time evolution takes place with no restrictions. At certain
times during the evolution the instantaneous density is used
to perform a static Hartree-Fock minimization while holding
the total density constrained to be the instantaneous TDHF
density. In essence, this provides us with the TDHF dynamical
path in relation to the multidimensional static energy surface
of the combined nuclear system. Since we are constraining
the total density all moments are simultaneously constrained.
The numerical procedure for implementing this constraint and
the method for steering the solution to ρTDHF(r, t) is discussed
in Refs. [27,28]. The convergence property is as good if
not better than in the traditional constrained Hartree-Fock
calculations with a constraint on a single collective degree
of freedom.

In Ref. [24] we have shown that the ion-ion interaction
potential is given by

V (R) = EDC(R) − EA1 − EA2 , (1)

where EDC is the density-constrained energy at the instanta-
neous separation R(t) and EA1 and EA2 are the binding energies
of the two nuclei obtained with the same effective interaction.
We would like to emphasize again that this procedure does
not affect the TDHF time evolution and contains no free
parameters or normalization. In practice, TDHF runs are
initialized with energies above the Coulomb barrier and in
Ref. [24] we have shown that there is no appreciable energy
dependence to the barriers obtained via the density-constrained
TDHF method. The separation coordinate R is the distance
between the centers of mass of the two nuclei.

In addition to the ion-ion potential it is also possible
to obtain the coordinate-dependent mass M(R) by using
conservation of energy:

M(R) = 2[Ec.m. − V (R)]

Ṙ2
, (2)

where the collective velocity Ṙ is directly obtained from the
TDHF evolution and the potential V (R) from the density
constraint calculations. In calculating fusion cross sections
by solving the Schrödinger equation we can either use this
coordinate-dependent mass or transfer the effects of this mass

to the ion-ion potential using the well-known coordinate scale
transformation [29]

dR̄ =
(

M(R)

µ

) 1
2

dR. (3)

As a result of this transformation all of the effects of
the coordinate-dependent mass are transferred to the scaled
potential while the reduced mass µ remains constant at its
asymptotic value.

B. Fusion for deformed nuclei

The heavy-ion interaction potential between two deformed
nuclei depends on the distance vector between their centers
of mass, R, and on the relative orientation of their intrinsic
principal axis systems, which may be described in terms of
three Euler angles (α, β, γ ) per nucleus; that is, in the most
general case we have

V = V (R, α1, β1, γ1, α2, β2, γ2). (4)

The expression for V can be simplified if the intrinsic nuclear
density distributions are axially symmetric; in this case, the
potential does not depend on the Euler angles γ1, γ2, which
describe rotations about the symmetry axes. If we put, for
convenience, the distance vector in the z-direction, R = Rez,
the potential between two deformed axially symmetric nuclei
has the structure

V = V (R, β1, β2,�α). (5)

The heavy-ion interaction potential is calculated with the DC-
TDHF method for a given set of orientation angles β1, β2,
and �α. Fortunately, test calculations using the double-folding
method described in Ref. [18] reveal that the dependence on the
Euler angle �α is negligible in our case: For example, at fixed
Euler angles β1 = 30◦ and β2 = 120◦ we find potential barrier
values of 94.26, 94.28, and 94.30 MeV for �α = 0◦, 45◦,
and 90◦, respectively. This variation is much smaller than the
variation with the Euler angles β1 and β2, which amount to
several MeV. In the DC-TDHF calculations of the heavy-ion
potential we therefore put �α = 0. In Fig. 1 we show the
definition of the angles β1 and β2 for two oblate nuclei. To
calculate the total fusion cross section at energy Ec.m., we first
consider the partial cross section for given initial orientations

FIG. 1. Orientation angles β1 and β2 of the oblate Ni nuclei with
respect to the collision axis.
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(β1, β2) of the two nuclei, which is given by

σ (Ec.m., β1, β2) = π

k2
0

∞∑
L=0

(2L + 1)TL(Ec.m., β1, β2), (6)

with k0 = √
2µEc.m.. The fusion barrier penetrabilities

TL(Ec.m., β1, β2) are obtained by numerical integration of the
two-body Schrödinger equation by using the incoming wave
boundary condition (IWBC) method [21,30]:[−h̄2

2µ

d2

dR2
+ L(L + 1)h̄2

2µR2
+ V (R, β1, β2) − E

]
ψ = 0,

where the quantity V (R, β1, β2) denotes the heavy-ion poten-
tial obtained via the DC-TDHF method. For the numerical
implementation we have followed the procedure for the
coupled-channel code CCFULL described in Ref. [23]. In IWBC
it is assumed that once the minimum of the potential is reached
fusion will occur. In practice, the Schrödinger equation is
integrated from the potential minimum, Rmin, where only an
incoming wave is assumed, to a large asymptotic distance,
where it is matched to incoming and outgoing Coulomb wave
functions. The barrier penetration factor, TL(Ec.m., β1, β2), is
the ratio of the incoming flux at Rmin to the incoming Coulomb
flux at large distance.

Once the partial fusion cross sections [Eq. (6)] for given
orientation angles (β1, β2) have been calculated, we have to
take an average over all initial angular orientations of both
nuclei:

σ (Ec.m.) =
∫ π

0
sin(β1)dβ1

∫ π

0
sin(β2)dβ2

× d2P (Ec.m., β1, β2)

sin(β1)dβ1 sin(β2)dβ2
σ (Ec.m., β1, β2),

where d2P (Ec.m., β1, β2) represents the alignment probability
for both deformed nuclei. Details of the dynamic alignment
formalism are presented in Ref. [31]. We give here a brief
summary: For a given incident energy Ec.m. we carry out a
semiclassical Coulomb excitation calculation of the dominant
collective levels of the deformed nucleus. The energy levels
and EL-transition matrix elements for 64Ni are taken from ex-
perimental data [32]: E2+ = 1.346 MeV, E4+ = 2.610 MeV,
and M(E2, 0+ → 2+) = −27.0e fm2 (oblate deformation).
The Coulomb excitation calculation starts at very large inter-
nuclear distances (about 1500 fm) when both nuclei may be
presumed to be in their respective ground states and stops at the
ion-ion separation distance R(t0) (about 16 fm). The Coulomb
excitation amplitudes determine the probability distribution of
initial orientations. Using the dominant monopole-multipole
part of the Coulomb interaction, the orientation probability
factorizes as follows:

d2P (Ec.m., β1, β2)

sin(β1)dβ1 sin(β2)dβ2
= dP1(Ec.m., β1)

sin(β1)dβ1

dP2(Ec.m., β2)

sin(β2)dβ2
.

In the special case of no preferential alignment (i.e., all initial
orientation angles are equally likely), this factor reduces to

d2P (Ec.m., β1, β2)

sin(β1)dβ1 sin(β2)dβ2
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FIG. 2. (Color online) Dynamic alignment resulting from
Coulomb excitation of 64Ni. Shown is the orientation probability
as a function of the Euler angle β in a central collision at internuclear
distances R = 1500 fm (blue curve) and at R = 16 fm (red curve).

In Fig. 2 we show the differential alignment probability as a
function of the Euler angle β used in our calculations.

III. RESULTS

We have carried out a number of TDHF calculations
with accompanying density constraint calculations to compute
V (R, β1, β2) given by Eq. (1). A detailed description of our
new three-dimensional unrestricted TDHF code has recently
been published in Ref. [33]. The code was modified to
self-consistently generate initial states for 64Ni with different
orientations. For the effective interaction we have primarily
used the Skyrme SLy5 force [34], including all of the time-odd
terms. In this case the 64Ni nucleus is essentially oblate, having
a quadrupole moment of −0.45 b. This is also confirmed by
other calculations [35,36].

All of our TDHF calculations were done at an initial energy
of Ec.m. = 98 MeV and separation R(t0) = 16 fm. We have
tested the convergence of ion-ion separation by performing
a DC-TDHF calculation starting from R(t0) = 30 fm and
found no numerically significant difference between the two
results. As we have reported in Ref. [24] the potential barriers
obtained from the DC-TDHF method are not sensitive to the
initial energy (above the barrier). We have tested this again by
running a few orientations at 112 MeV and did not observe any
appreciable difference. In Fig. 3 we show the barriers obtained
for limiting orientations of the 64Ni nuclei, as well as the effect
of the coordinate-dependent mass, M(R), on the heavy-ion
potentials (dashed curves). We have also calculated these
limiting barriers using other effective interactions, SkM∗ [37]
and SLy4 [34], with essentially no difference.

The physical picture that emerges from the barriers shown
in Fig. 3 is that the total fusion cross section strongly depends
on the deformation phase space. It also shows the fallacy of the
often-used statement that a certain energy is sub-barrier, which
stems from spherical systems that can be studied by using a
single barrier. For deformed systems this is dependent on the
orientation of the nuclei. For the 64Ni+64Ni system the only
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FIG. 3. (Color online) Potential barriers, V (R, β1, β2), obtained
from density-constrained TDHF calculations for the 64Ni+64Ni
system. The Euler angles β1 and β2 indicate different orientations of
the deformed 64Ni nucleus. Solid curves are calculated with constant
reduced mass; the dashed curves show the corresponding barriers
incorporating the effects of the coordinate-dependent mass.

truly sub-barrier energies are those below the lowest potential
barrier corresponding to the β1 = β2 = 90◦ orientation, about
Ec.m. = 92 MeV. The fusion cross sections corresponding to
energies above the lowest barrier will be dominated by it since
above-barrier cross sections are much larger than the below-
barrier ones.

For the calculation of barrier distributions as a function of
the orientation angles β1 and β2 we have chosen an angular
spacing of �β = 10◦. In principle this requires 400 DC-TDHF
calculations, which would be very time consuming. However,
one can show that some of the orientations are equivalent
to each other. One major assumption we have made is to
assume the equality of the angular intervals (0, π/2) and
(π/2, π ), which is not exactly correct when both nuclei
are deformed. To assure that this approximation does not
affect the lowest energy cross sections (primarily determined
by the lowest barrier) we have explicitly calculated those
angles that would have appreciable contribution at these
energies. In total we have computed 20 potential barriers
corresponding to various orientations for the SLy5 force.
In principle even this may not be necessary since all of
the barriers must fall between the limiting cases shown in
Fig. 3. Although actual calculations show that a constant
angular interval �β does not always lead to equally spaced
barriers, such an extrapolation has a minimal effect on the
actual cross section calculations. We have confirmed this by
generating such barriers from the limiting barriers using a
numerical averaging procedure and calculating the fusion cross
section.

In Fig. 4 we show the total DC-TDHF fusion cross section
as a function of the center-of-mass energy using the SLy5
force with constant reduced mass (solid black curve) and with
coordinate-dependent mass (solid blue curve). Also shown
are the experimental data (filled circles) and the coupled-
channels calculations of Ref. [2] (dashed red line). Results
for SLy4 and SkM∗ interactions are indistinguishable from
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FIG. 4. (Color online) Total fusion cross section as a function of
Ec.m.. Shown are the experimental data (filled red circles) and the
coupled-channel calculation from Ref. [2] (red dashed curve) and
fusion cross sections calculated with the density-constrained TDHF
method using the SLy5 force with constant reduced mass (solid black
line) and with coordinate-dependent mass (solid blue line).

the SLy5 result. We observe that the DC-TDHF calculations,
which contain no parameters or normalization, accurately
reproduce the fusion cross sections for all energies except
for energies Ec.m. � 87 MeV. The cross sections calculated
with a coordinate-dependent mass (solid blue line) show an
improvement in the intermediate energy range but overpredict
the data at lower energies. We believe that the small deviations
at higher energies are largely due to the symmetry assumptions
made in alignment averaging. As we stated earlier this is not
the case for the lowest energies as these were explicitly done
without symmetry assumptions.

To better examine the evolution of the nuclear density, in
Fig. 5 we have plotted the nuclear density at four special
internuclear distances R for the β1 = β2 = 90◦ initial orien-
tation. Frame (a) corresponds to the nuclear density at the
outer turning point of the ion-ion potential (R = 13.1 fm)
at Ec.m. � 86 MeV. Frame (b) of Fig. 5 shows the total
density at the ion-ion separation of R = 11.0 fm, which
approximately corresponds to the location of the inner turning
point at Ec.m. � 86 MeV. The mass density distribution of
64Ni predicted by the Skyrme-HF calculation shows that the
outer skin and the inner core have different orientations.
Therefore there is an ambiguity in the definition of “nuclear
orientation.” At low beam energies, the sub-barrier fusion cross
section is dominated by the lowest potential barrier, which
according to Fig. 3 corresponds to Euler angles β1 = β2 = 90◦
(defined with respect to the outer skin). In examining the
density distribution of the dinuclear system as a function of
the internuclear distance R in Fig. 5, we find that the skin
and the core regions of the matter distribution have different
orientations at distances R larger than 10 fm. At around
R = 10 fm, inside the pocket, the nuclear core rotates and
aligns with the total nuclear density. In frame (c) we show this
at R = 9.5 fm. The last frame (d) shows the nuclear density
at the potential minimum, which occurs around R = 8.0 fm.
We have investigated the microscopic origin of the difference
between core orientation and skin orientation in the density
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FIG. 5. (Color online) Density contours in
the x-z plane for the TDHF time evolution
of the 64Ni+64Ni system. Initially both nuclei
are oriented with angles β1 = β2 = 90◦ at a
center-of-mass energy of Ec.m. = 98 MeV. The
values for the ion-ion separation R correspond
to special points along the potential barrier at the
lowest experimental energy of Ec.m. = 86 MeV:
(a) outer turning point, (b) inner turning point,
(c) reorientation of the core, and (d) potential
minimum.

of 64Ni. For this purpose, we have examined the quadrupole
moments q20 of all single-particle states, both for neutrons
and for protons. We find that the occupied states in this
nucleus have single-particle quadrupole moments that are
predominantly of the same sign (negative for our choice
of quantization axis). However, we find that there are two
deeply bound low-angular-momentum jz = ±1/2 states with
large opposite (positive) quadrupole moment: The neutron
single-particle state at E = −21.2 MeV has a q20 value
of +11.1 fm2 and the corresponding proton state at E =
−16.6 MeV has a quadrupole moment of +11.4 fm2. To link
the core orientation to a physical observable we have computed
the quadrupole moments of the individual nuclei with respect
to their centers during the collision. We observe that as the two
nuclei approach the touching configuration their respective
quadrupole moments increase because of their rotating cores.
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FIG. 6. (Color online) Total fusion cross section as a function of
Ec.m.. Shown are the experimental data (filled red circles) and the
density-constrained TDHF cross sections using the core orientation
with the SLy5 force for the lowest energy cross sections with constant
reduced mass (solid black line) and with coordinate-dependent mass
(solid blue line).

A similar phenomenon was observed in macroscopic-
microscopic model calculations of the 64Ni + 208Pb fusion
barrier [38]. In their work the authors took into account the
projectile deformation effect on the fusion barrier. They find
that the original oblate deformation of the 64Ni projectile turns
into a large prolate deformation caused by the attractive nuclear
force as the target and projectile come closer. The instability
develops before touching because the attractive short-range
nuclear force overcomes the repulsive Coulomb force and the
shape-stabilizing effect of shell structure.

Based on these considerations let us hypothesize that, at low
bombarding energies, the core nucleons play a more important
role than the outer skin. Making this assumption, we find
that by using the core orientation angle rather than the skin
orientation in the angle-averaging procedure for the lowest
beam energies (Ec.m. � 87 MeV) we are able to reproduce
the measured fusion cross sections (see Fig. 6). Again, the
calculations were carried out with constant reduced mass and
coordinate-dependent mass, as shown by the black and blue
curves in Fig. 6, respectively. The coordinate-dependent mass
improves the intermediate energy cross sections. Although
the coordinate-dependent mass affects the orientation-angle-
dependent barriers significantly (Fig. 3), the impact on the
fusion cross section is reduced by the sin(β)dβ factors in the
orientation-angle-averaging procedure when core orientation
angles are used.

IV. CONCLUSIONS

As we investigate fusion reactions involving neutron-rich
and deformed nuclei it is apparent that an understanding of
the structure of these nuclei is crucial to the description of
the reaction dynamics. For these nuclei various effects, such
as inelastic excitations, particle transfer, and other dynamical
effects, lead to substantial modification of the naive potential
barrier calculations, in which an inert core and no dynamics are
assumed. Consequently, the definition of sub-barrier fusion
becomes ambiguous since it is difficult to determine the barrier
a priori.
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We have performed density-constrained TDHF calculations
of fusion cross sections for the 64Ni+64Ni system. Our results
agree well with the measured data despite having no adjustable
parameters. This indicates that many of the reaction dynamics
are included in the TDHF evolution of the nuclear density.
It would be truly amazing if a fully microscopic calculation
that contains no free parameters or normalization, such as
the DC-TDHF method, would be able to reproduce the
measured fusion cross sections better than the coupled-channel
calculations. The main purpose of the fully microscopic
calculations is to gain insight into the reaction dynamics and to
investigate those degrees of freedom that are completely absent
from methods that use a phenomenological frozen-density
approximation. However, the DC-TDHF calculations show a
lot of promise for the microscopic description of heavy-ion
fusion as better and better effective interactions are developed.

We have further investigated fusion cross sections at deep
sub-barrier energies. In the absence of a true many-body
tunneling approach to nuclear fusion it is difficult to envision

the dynamical formation of the potential barrier at very deep
sub-barrier energies. As we go further down in energy the inner
turning point of the ion-ion potential involves larger overlaps
among the participating nuclei. Consequently, core nucleons
may play a more dominant role in dynamically building up the
potential barrier. In the case of β1 = β2 = 90◦, corresponding
to the lowest potential barrier, we observed that the nuclear
core has a different orientation from the total nuclear density.
Based on this observation we have speculated that at the lowest
energies it may make sense to use the orientation of the core
rather than the nuclear surface. This core orientation effect
allows us to reproduce the experimental cross sections at the
lowest energies.
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