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Abstract. We present the numerical details of a new method for calculating ion-ion interaction
potentials from time-dependent Hartree-Fock calculations using density as a constraint.

1. Introduction
The investigation of internuclear potentials for heavy-ion collisions is of fundamental importance
for the study of fusion reactions as well as for the formation of superheavy elements and nuclei
far from stability. Recently, we have developed a new method to extract ion-ion interaction
potentials directly from the time-dependent Hartree-Fock (TDHF) time-evolution of the nuclear
system [1]. In the density-constrained TDHF (DC-TDHF) approach the TDHF time-evolution
takes place with no restrictions. At certain times during the evolution the instantaneous
density is used to perform a static Hartree-Fock minimization while holding the neutron and
proton densities constrained to be the corresponding instantaneous TDHF densities. In essence,
this provides us with the TDHF dynamical path in relation to the multi-dimensional static
energy surface of the combined nuclear system. In this approach there is no need to introduce
constraining operators which assume that the collective motion is confined to the constrained
phase space. In short, we have a self-organizing system which selects its evolutionary path
by itself following the microscopic dynamics. Some of the effects naturally included in the
DC-TDHF calculations are: neck formation, mass exchange, internal excitations, deformation
effects to all order, as well as the effect of nuclear alignment for deformed systems. The DC-
TDHF theory provides a comprehensive approach to calculating fusion barriers in the mean-field
limit. The theory has been applied to calculate fusion cross-sections for 64Ni+132Sn, 64Ni+64Ni,
16O+208Pb, 70Zn + 208Pb, 48Ca + 238U, and 132,124Sn+96Zr systems [2, 3, 4, 5, 6, 7, 8]. In
this paper we will outline the DC-TDHF method and give examples of its application to the
calculation of fusion cross-sections for various systems.

2. Theory
In many branches of science, highly complex many-body systems are often described in
macroscopic terms, this is particularly true in the case of relativistic and non-relativistic heavy-
ion collisions. For example, the time evolution of the nuclear surface and the corresponding
geometrical shape provides a very useful parameter to help organize experimental data. Using
this approach numerous evolutionary models have been developed to explain particular aspects
of experimental data. These methods provide a useful and productive means for quantifying
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multitudinous reaction data. In practice, they require a quantitative understanding of the data
as well as a clear physical picture of the important aspects of the reaction dynamics. The
depiction of the collision must be given at the onset, including the choice of coordinates which
govern the evolution of the reaction. Guessing the correct degrees of freedom is extremely
hard, without a full understanding of the dynamics, and can easily lead to misbegotten
results. More importantly, it is most often not possible to connect these macroscopic classical
parameters, describing nuclear matter under extreme excitation and rearrangement, with the
more fundamental properties of the nuclear force. Such difficulties can only be overcome with a
fully microscopic theory of the collision dynamics.

2.1. Time-dependent Hartree-Fock method
The theoretical formalism for the microscopic description of complex many-body quantum
systems and the understanding of the nuclear interactions that result in self-bound, composite
nuclei possessing the observed properties are the underlying challenges for studying low energy
nuclear physics. The Hartree-Fock approximation and its time-dependent generalization the
time-dependent Hartree-Fock theory has provided a possible means to study the diverse
phenomena observed in low energy nuclear physics [9].

Given a many-body Hamiltonian containing two and three-body interactions

H =

N∑
i

ti +

N∑
i<j

vij +

N∑
i<j<k

vijk , (1)

the time-dependent action S can be constructed as

S =

∫ t2

t1

dt < Φ(t)|H − iℏ∂t|Φ(t) > . (2)

Here, Φ denotes the time-dependent, many-body wavefunction, Φ(r1, r2, . . . , rA; t), and ti is
the one-body kinetic energy operator. General variation of S recovers the time-dependent
Schrödinger equation. In TDHF approximation the many-body wavefunction is replaced by
a single Slater determinant and this form is preserved at all times. The determinental form
guarantees the antisymmetry required by the Pauli principle for a system of fermions. In this
limit, the variation of the action yields the most probable time-dependent path between points
t1 and t2 in the multi-dimensional space-time phase space

δS = 0 → Φ(t) = Φ0(t) . (3)

In practice Φ0(t) is chosen to be a Slater determinant

Φ0(t) =
1√
N !
det|ϕλ(r , t)| , (4)

where ϕλ(r , t) are the single-particle states with quantum numbers λ. If the variation in Eq.(3)
is performed with respect to the single-particle states ϕ∗λ we obtain a set of coupled, nonlinear,
self-consistent initial value equations for the single-particle states

h ({ϕµ})ϕλ = iℏϕ̇λ λ = 1, ..., N . (5)

These are the fully microscopic time-dependent Hartree-Fock equations which preserve the major
conservation laws such as the particle number, total energy, total angular momentum, etc. As we
see from Eq.(5), each single-particle state evolves in the mean-field generated by the concerted
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action of all the other single-particle states. Static equations can be obtained from Eq.(5) by
taking out a trivial phase from the single-particle states

h({χµ})χλ = ϵλχλ

ϕλ(r , t) = e−iϵλt/ℏχλ(r ) . (6)

In TDHF, the initial nuclei are calculated using the static Hartree-Fock (HF) theory. The
resulting Slater determinants for each nucleus comprise the larger Slater determinant describing
the colliding system during the TDHF evolution. Nuclei are assumed to move on a pure Coulomb
trajectory until the initial separation between the nuclear centers used in TDHF evolution.
Using the Coulomb trajectory we compute the relative kinetic energy at this separation and the
associated translational momenta for each nucleus. The nuclei are than boosted by multiplying
the HF states with

Φj → exp(ıkj ·R)Φj , (7)

where Φj is the HF state for nucleus j and R is the corresponding center of mass coordinate

R =
1

Aj

Aj∑
i=1

ri . (8)

The Galilean invariance of the TDHF equations assures the evolution of the system without
spreading and the conservation of the total energy for the system. In TDHF, the many-body
state remains a Slater determinant at all times. The final state is a filled determinant, even in
the case of two well separated fragments. This phenomenon is commonly known as the “cross-
channel coupling” and indicates that it is not possible to identify the well separated fragments
as distinct nuclei since each single particle state will have components distributed everywhere in
the numerical box. In this sense it is only possible to extract inclusive (averaged over all states)
information from these calculations.

2.2. DC-TDHF method
The concept of using density as a constraint for calculating collective states from TDHF time-
evolution was first introduced in Ref. [10], and used in calculating collective energy surfaces in
connection with nuclear molecular resonances in Ref. [11].

In this approach we assume that a collective state is characterized only by density ρ, and
current j. This state can be constructed by solving the static Hartree-Fock equations

< Φρ,j|a†hapĤ|Φρ,j >= 0 , (9)

subject to constraints on density and current

< Φρ,j|ρ̂(r)|Φρ,j > = ρ(r, t)

< Φρ,j|ȷ̂(r)|Φρ,j > = j(r, t) .

Choosing ρ(r, t) and j(r, t) to be the instantaneous TDHF density and current results in the
lowest energy collective state corresponding to the instantaneous TDHF state |Φ(t) >, with the
corresponding energy

Ecoll(ρ(t), j(t)) =< Φρ,j|Ĥ|Φρ,j > . (10)

This collective energy differs from the conserved TDHF energy only by the amount of internal
excitation present in the TDHF state, namely

E∗(t) = ETDHF − Ecoll(t) . (11)
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However, in practical calculations the constraint on the current is difficult to implement but we
can define instead a static adiabatic collective state |Φρ > subject to the constraints

< Φρ|ρ̂(r)|Φρ > = ρ(r, t)

< Φρ|ȷ̂(r)|Φρ > = 0 .

In terms of this state one can write the collective energy as

Ecoll = Ekin(ρ(t), j(t)) + EDC(ρ(r, t)) , (12)

where the density-constrained energy EDC , and the collective kinetic energy Ekin are defined as

EDC = < Φρ|Ĥ|Φρ >

Ekin ≈ m

2

∑
q

∫
d3r j2q(t)/ρq(t) ,

where the index q is the isospin index for neutrons and protons (q = n, p). From Eq. 12 is is clear
that the density-constrained energy EDC plays the role of a collective potential. In fact this is
exactly the case except for the fact that it contains the binding energies of the two colliding
nuclei. One can thus define the ion-ion potential as [1]

V = EDC(ρ(r, t))− EA1 − EA2 , (13)

where EA1 and EA2 are the binding energies of two nuclei obtained from a static Hartree-Fock
calculation with the same effective interaction. For describing a collision of two nuclei one can
label the above potential with ion-ion separation distance R(t) obtained during the TDHF time-
evolution. This ion-ion potential V (R) is asymptotically correct since at large initial separations
it exactly reproduces VCoulomb(Rmax). In addition to the ion-ion potential it is also possible to
obtain coordinate dependent mass parameters. One can compute the “effective mass” M(R)
using the conservation of energy

M(R) =
2[Ec.m. − V (R)]

Ṙ2
, (14)

where the collective velocity Ṙ is directly obtained from the TDHF evolution and the potential
V (R) from the density constraint calculations.

2.3. Skyrme interaction
Almost all TDHF calculations have been done using the Skyrme interaction. A variety of
calculations have shown that the TDHF results are very sensitive to the different parametrization
of the Skyrme force [12]. The Skyrme energy density functional contains terms which depend
on the nuclear density, ρ, kinetic-energy density, τ , spin density, s, spin kinetic energy density,
T, and the full spin-current pseudotensor, J, as

E =

∫
d3r H(ρ, τ, j, s,T,J; r) . (15)

The time-odd terms (j, s, T) vanish for static calculations of even-even nuclei, while they are
present for odd mass nuclei, in cranking calculations, as well as in TDHF. The spin-current
pseudotensor, J, is time-even and does not vanish for static calculations of even-even nuclei.
Our TDHF program includes all of the time-odd terms in the Skyrme interaction.
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3. Numerical methods
In this section we discuss the numerical details of performing TDHF calculations of nuclear
collisions as well as the density-constraint method, which is crucial for ion-ion potential
calculations.

3.1. Discrete variation and lattice equations
The lattice solution of differential equations on a discretized mesh of independent variables may
be viewed to proceed in two steps: (1) Obtain a discrete representation of the functions and
operators on the lattice. (2) Solve the resulting lattice equations using iterative techniques.
Step (1) is an interpolation problem for which we could take advantage of the techniques
developed using the basis-spline functions [13]. The use of the basis-spline collocation method
leads to a matrix-vector representation on the collocation lattice with a metric describing the
transformation properties of the collocation lattice.

In order to obtain a set of lattice equations which preserve the conservation laws associated
with the continuous equations it is essential to develop a modified variational approach. This
goal is achieved by performing a variation to the discretized form of a conserved quantity, i.e.
total energy. Consequently, the resulting equations will preserve all of the conserved quantities
on the lattice. For the TDHF equations we consider a general discretized form of the action

S =

∫
dt
∑
αβγ

∆Vαβγ

{
H(αβγ)−

[
iℏ
∑
µ

ψ∗
µ(αβγ)

∂ψµ

∂t
(αβγ)

]}
, (16)

where indices α, β, γ denote the lattice points in three-dimensional space, and ∆Vαβγ is the
corresponding infinitesimal volume element. Due to the presence of derivative operators in the
Hamiltonian the explicit form of these expressions will depend non-locally on the lattice indices.
The general variation, which preserves the properties of the continuous variation, is given by

δψ∗
µ(αβγ)

δψ∗
λ(α

′β′γ′)
=

1

∆Vαβγ
δλµδα′αδβ′βδγ′γ . (17)

Until recently, most HF and TDHF calculations have been performed using finite-difference
lattice techniques. The details of the discrete variation for the finite-difference case are given in
Refs. [14, 15]. Below we outline a procedure for using the BSCM for the numerical solution of
HF and TDHF equations. Further details of the BSCM is published elsewhere [13].

3.2. Basis-splines
Given a set of points or knots denoted by the set {xi} a basis-spline (B-spline denoted by BM

i )
function of order M is constructed from continuous piecewise polynomials of order M − 1 [16].
B-splines have continuous derivatives up to (M − 2)nd derivative and a discontinuous (M − 1)st

derivative. We only consider odd order splines or even order polynomials for reasons related to
the choice of the collocation points. The ith B-spline is nonzero only in the interval (xi, xi+M ).
This property is commonly referred to as limited support. The knots are the points where
polynomials that make up the B-spline join. In the interval containing the tail region B-splines
fall off very rapidly to zero. An example of order M = 5 splines extending over a physical
region is illustrated in Fig.1. We can also construct exact derivatives of B-splines provided the
derivative order does not exceed M − 1.

A continuous function f(x), defined in the interval (xmin, xmax), can be expanded in terms
of B-spline functions as

f(x) =
∑
i

BM
i (x)ci , (18)
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Figure 1. A region of space with physical boundaries located at knots xM and xM+N forM = 5
and N = 5. The B-spline BM

1 which begins at the first knot x1 has its tail in the physical region.
The last B-spline which begins within the physical boundaries is BM

N+M−1. It extends up to the
last knot xN+2M−1.

where quantities ci denote the expansion coefficients. We can solve for the expansion coefficients
in terms of a given (or to be determined) set of function values evaluated at a set of data points
more commonly known as collocation points. There are a number of ways to choose collocation
points [16, 13], however, for odd order B-splines a simple choice is to place one collocation point
at the center of each knot interval within the physical boundaries

xα =
xα+M−1 + xα+M

2
, α = 1, . . . , N. (19)

Here, xM = xmin, xN+M = xmax, and N is the number of collocation points. We can now write
a linear system of equations by evaluating (18) at these collocation points

fα =
∑
i

Bαic
i , (20)

where fα ≡ f(xα), and Bαi ≡ BM
i (xα). In order to solve for the expansion coefficients the

matrix B needs to be inverted. However, as it stands matrix B is not a square matrix, since the
total number of B-splines with a nonzero extension in the physical region is N +M −1. In order
to perform the inversion we need to introduce additional linear equations which represent the
boundary conditions imposed on f(x) at the two boundary points, xM and xM+N . The essence
of the lattice method is to eliminate the expansion coefficients ci using this inverse matrix. The
details of using the boundary conditions (or periodic boundaries) and inverting the resulting
square matrix are discussed in Ref. [13]. Following the inversion the coefficients are given by

ci =
∑
α

[
B−1

]iα
fα . (21)

One can trivially show that all local functions will have a local representation in the finite
dimensional collocation space

f(x) −→ fα . (22)
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The collocation representation of the operators can be obtained by considering the action of
an operator O onto a function f(x)

Of(x) =
∑
i

[OBM
i (x)]ci . (23)

If we evaluate the above expression at the collocation points xα we can write

[Of ]α =
∑
i

[OB]αic
i . (24)

Substituting from Eq. (21) for the coefficients ci we obtain

[Of ]α =
∑
iβ

[OB]αi
[
B−1

]iβ
fβ

=
∑
β

Oβ
αfβ , (25)

where we have defined the collocation space matrix representation of the operator O by

Oβ
α =

∑
i

[OB]αi
[
B−1

]iβ
. (26)

Notice that the construction of the collocation space operators can be performed once and for
all at the beginning of a calculation, using only the given knot sequence and collocation points.
Due to the presence of the inverse in Eq. (26) the matrix O is not sparse. In practice, operator
O is chosen to be a differential operator such as d/dx or d2/dx2. By a similar construction it is
also possible to obtain the appropriate integration weights on the collocation lattice [13].

3.3. Discrete HF equations
Since the detailed derivation of the BSCM representation of the TDHF equations involve many
terms that are present in the energy functional, we will only show few terms. The three-
dimensional expansion in terms of B-splines is a simple generalization of Eq. (18)

ψλ(x, y, z) =
∑
ijk

cijkλ Bi(x)Bj(y)Bk(z) . (27)

The knots and collocation points for each coordinate can be different. With the appropriate
definition of boundary conditions all of the discretization techniques discussed in the previous
section can be generalized to the three-dimensional space. The details of this procedure are
given in [13].

As an example for a local term let us consider a part of the t0 contribution to the total energy

t0
2
(1 +

x0
2
)

∫
d3rρ2 =

t0
2
(1 +

x0
2
)
∑
αβγ

wαwβwγ [ρ(αβγ)]2 , (28)

where on the right-hand side we have written the discretized form on a collocation lattice with
collocation weights denoted by w. Here, α, β, γ represent the collocation points in x, y, and
z directions, respectively. In order to be able to perform the variation with respect to the
single-particle states ψ∗

λ we rewrite equation (28) explicitly

t0
2
(1 +

x0
2
)
∑
αβγ

wαwβwγ
∑
µν

ψ∗
µψµψ

∗
νψν . (29)
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Using Eq.(17) in the variation of Eq.(29) we obtain (after replacing the primed indices with
unprimed ones) the contribution

t0(1 +
x0
2
)ρ(αβγ)ψλ(αβγ) , (30)

where we have rewritten a summation as the total density. The same procedure can be carried
out for the nonlocal terms in the energy density. A typical term is illustrated below

(∇ψ±
λ )αβγ =

∑
α′

Dα′
α ψ

±
λ (α

′βγ) ı̂+
∑
β′

Dβ′

β ψ
±
λ (αβ

′γ) ȷ̂

+
∑
γ′

Dγ′
γ ψ

±
λ (αβγ

′) k̂

where the matrices D denote the first derivative matrices in x, y, z directions (they can be
different although the notation does not make this obvious), calculated as described in the
previous section. Finally, the HF equations can be written as matrix-vector equations on the
collocation lattice

hψ±
λ −→ h ·ψ±

λ . (31)

The essence of this construction is that the terms in the single-particle Hamiltonian h are
matrices in one coordinate and diagonal in others. Therefore, h need not be stored as a full
matrix, which allows the handling of very large systems directly in memory. The details of this
procedure are discussed below.

3.4. Solution of the discrete equations
In this subsection we will outline some of the numerical methods developed for the solution of
the discretized HF and TDHF equations. The subsection is divided into two parts; first part
discusses the static iteration methods and the solution of the field equations and in particular the
powerful damped relaxation method [17]. In addition we discuss the implementation of external
constraints on the HF equations. The second part of the subsection introduces a number of time-
evolution methods used in our calculations. Typical numerical accuracies are also discussed.

3.4.1. Static solutions The solution of the HF equations (31) represent the problem of finding
the few lowest eigenvalues of a very large Hamiltonian matrix. Furthermore, due to the fact
that we are dealing with a self-consistent problem the matrix elements must be recalculated at
every iteration. However, in practice the matrix elements need not be stored. Instead, one can
make use of the inherent sparsity to dynamically construct the operation of the single-particle
Hamiltonian onto a statevector. The basic operation is

ψ′ = h ·ψ , (32)

where the construction of the right hand side is done by explicitly programming the required
linear combinations of the elements of ψ to give ψ′. In this approach the only storage
requirements are for the statevectors and small matrices present in the Hamiltonian.

The lattice equations are solved by using the damped relaxation method described in
Refs. [11, 17]. A simple way for introducing the damped relaxation method is by pointing
out its resemblance to the so-called imaginary time method. A more formal discussion is given
in Ref. [17] where the generalization to the relativistic Dirac equation is also introduced. We
start with the TDHF equations

iℏ
∂ψλ

∂t
= h(t)ψλ . (33)
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In terms of the discretized time tn = n∆t the solution at time n+ 1 can be obtained from time
n by (see below)

ψn+1
λ = e−i∆thn/ℏψn

λ , (34)

where hn is the single-particle Hamiltonian at the nth iteration. The imaginary time-step method
consists of the transformation ∆t→ −i∆t

χn+1
λ = e−x0(hn−ϵnλ)χn

λ , (35)

where x0 = ∆t/ℏ, and we have taken out a trivial phase from ψn
λ. The expansion of the

exponential to first order in x0 yields the imaginary time iteration scheme

χn+1
λ = O[χn

λ − x0(h
n − ϵnλ)χ

n
λ] . (36)

where O stands for Gram-Schmidt orthonormalization, which is necessary to ensure the
orthonormality of the single-particle states at each iteration. In Eq. (36) the index n is no
longer associated with time and it simply becomes an iteration counter. It is clear from Eq. (35)
that the exponential acts as a filter in selecting the lowest eigenvalues of h and leads to the
minimization of the HF energy. The generalization of the imaginary time method, where we
introduce the damping matrix D, results in the damped relaxation method

χn+1
λ = O[χn

λ − x0D(E0)(h
n − ϵnλ)χ

n
λ] . (37)

The damping operator D is chosen to be

D(E0) =

[
1 +

T

E0

]−1

≈
[
1 +

Tx

E0

]−1 [
1 +

Ty

E0

]−1 [
1 +

Tz

E0

]−1

,

where T denotes the kinetic energy operator. Limits can be established for the ranges of the
parameters x0 and E0 [17], but in practice fine-tuning is necessary for optimal performance.
Two convergence criteria are used in practical calculations; one being the fractional change in
the HF energy

∆En =
En+1 − En

En
, (38)

and other the fluctuations in energy

η ≡
√
< H2 > − < H >2 . (39)

The fluctuations are a more stringent condition than the simple energy difference between two
iterations. In practice, we have required η to be less than 10−6. For this value of the energy
fluctuation the fractional change in the HF energy is about 10−13.

The calculation of the HF Hamiltonian also requires the evaluation of the direct Coulomb
contribution. However, since the calculation of the three-dimensional Coulomb integral is very
costly, instead one could solve the corresponding differential equation

∇2UC(r ) = −4πe2ρp(r ) . (40)

Details of solving the Poisson equation using the BSCM is given in Ref. [13].
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3.4.2. Constrained HF calculations It is sometimes desirable to solve the static HF equations
away from the global minimum in energy. Such situations usually arise in the study of fission
barriers and in the study of long-lived superdeformed states of nuclei that can be formed during
low energy heavy-ion collisions. These methods have been instrumental for the understanding
of the formation of nuclear molecules [11]. All of these cases require the existence of a stable
minimum which does not coincide with the ground state configuration. The usual approach
is to study the HF energy of a nuclear system by keeping certain macroscopic degrees of
freedom at pre-specified values. This results in a multi-dimensional energy surface from which
extremum values can be obtained. The reliability of these results depend strongly on the correct
identification of the relevant macroscopic degrees of freedom. However, as we will see below a
special constrained HF method, density constrained HF, has also been developed which allows
the minimization of the energy along a TDHF trajectory.

The goal is to devise an iteration scheme such that the expectation value of an arbitrary
operator Q̂ does not change from one static iteration to next∑

λ

< χn+1
λ |Q̂|χn+1

λ >=
∑
λ

< χn
λ|Q̂|χn

λ > . (41)

Furthermore, we require this expectation value to be a fixed number Q0. A procedure can be
developed by using Lagrange multipliers that are dynamically adjusted [11]. We start with
the static HF iteration scheme modified by the addition of a constraint (we have omitted the
damping matrix D in the equations below for simplicity)

χn+1
λ = O[χn

λ − x0(h
n + λQ̂− ϵnλ)χ

n
λ] . (42)

In Ref.[11] we give a set of exact equations which preserve the expectation of the constraining
operator to order x20. However, these equations involve the calculation of exchange terms and
may become costly. Instead, one can develop a simpler iterative scheme as follows. Perform an
intermediate step

χ
n+1/2
λ = O[χn

λ − x0(h
n + λnQ̂− ϵnλ)χ

n
λ] , (43)

and calculate the difference

δQn+1/2 =
∑
λ

< χ
n+1/2
λ |Q̂|χn+1/2

λ > −
∑
λ

< χn
λ|Q̂|χn

λ > . (44)

In analogy with the exact case the Lagrange parameter λ is altered to reduce this difference

λn+1 = λn + c0
δQn+1/2

2x0
∑

λ < χn
λ|Q̂2|χn

λ > +d0
, (45)

where c0 and d0 are empirical parameters replacing the exchange terms. In terms of these
intermediate states the (n+ 1)st step is given by

χn+1
λ = O[χ

n+1/2
λ − x0(λ

n+1 − λn + δλn)Q̂χ
n+1/2
λ ] , (46)

where

δλn =

∑
λ < χn

λ|Q̂|χn
λ > −Q0

2x0
∑

λ < χn
λ|Q̂2|χn

λ > +d0
. (47)

The extension of the method which allows the entire density to be constrained is
straightforward. In this case we would like to constrain a continuous density

ρn(r ) =
∑
λ

|χn
λ(r )|2 , (48)
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to be equal to ρ0(r ). The constraining operator Q̂ becomes the density operator ρ̂(r ) defined
in the single-particle space

< χn
λ|ρ̂(r )|χn

λ >= |χn
λ(r )|2 (49)

and the product λQ̂ is replaced by an integral

λQ̂ −→
∫
d3r λ(r )ρ̂(r ) = λ(r ) . (50)

The last equality is due to the fact that in coordinate space ρ̂(r ) is a delta function. An iterative
scheme for λn(r ) is given by

λn+1(r ) = λn(r ) + c0
δρn+1/2

2x0ρn(r ) + d0
, (51)

where
δρn+1/2(r ) ≡ ρn+1/2(r )− ρ0(r ) (52)

is obtained from half-time iteration step

χ
n+1/2
λ = O[χn

λ − x0(h
n + λn(r )− ϵnλ)χ

n
λ] . (53)

Note that in these equations we require that the density remain equal to ρ0(r ) at every iteration
and not just at the final step. Using these wavefunctions the full iteration can be written as

χn+1
λ = O[χ

n+1/2
λ − x0(λ

n+1(r )− λn(r ) + δλn(r ))χ
n+1/2
λ ] , (54)

where

δλn(r ) = c0
ρn(r )− ρ0(r )

2x0ρ0(r ) + d0
. (55)

During the density constrained HF iterations the single-particle states readjust to minimize
the energy while the initial density is kept fixed. In practical calculations the parameter x0 has
been replaced by the damping operator and the constants c0 and d0 were chosen to be 1.9 and
5× 10−5, respectively.

3.4.3. Time evolution The formal solution of the TDHF equations (5) is

ψλ(t) = U(t, t0)ψλ(t0) , (56)

where we have omitted the spatial coordinates for simplicity and the time propagator U(t, t0) is
given by

U(t, t0) = T exp

[
−i
ℏ

∫ t

t0

dt′h(t′)

]
. (57)

The quantity T denotes time-ordering which is necessary in the general case. In practical
calculations we discretize time as

tn = n∆t n = 0, 1, 2, ...N , (58)

and express the evolution operator in successive infinitesimal pieces

U(t, t0) = U(t, tN−1)U(tN−1, tN−2)...U(t1, t0) . (59)
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In this case the time-ordering operator can be ignored. For three-dimensional calculations the
exponential operator is expanded as a Taylor series

U(tn+1, tn) ≈

(
1 +

K∑
k=1

(−i∆th/ℏ)k

k!

)
. (60)

The expansion of the operator requires repeated applications of h onto the wavefunctions. In
practice, only 6 − 8 terms are needed for the conservation of the norm at 1 part in 10−10 level
during the entire time-evolution. The expansion method is also attractive due to the fact that
it only involves matrix vector operations which could be easily customized for vector or parallel
computers.

4. Applications
In this section we give examples of DC-TDHF calculation of potential barriers and fusion cross-
sections. Calculations were done in 3-D geometry and using the full Skyrme force (SLy4) [12]
without the center-of-mass correction as described in Ref. [18, 19]. We have performed density
constraint calculations every 20 time steps. For the calculation of the ion-ion separation distance
R we use the hybrid method, which relates the coordinate to the quadrupole moment for
small R values, as described in Ref. [6]. The accuracy of the density constraint calculations
is commensurate with the accuracy of the static calculations.
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Figure 2. Potential barriers obtained
from density constraint TDHF calculations
at three different energies. The three
dashed curves correspond to the trans-
formed potential using coordinate depen-
dent masses.
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Figure 3. Total fusion cross section
as a function of c.m. energy using the
potentials of Fig. 2. The three curves
correspond to the transformed potential
using coordinate dependent masses.

4.1. Spherical system
The DC-TDHF method is expected to do best for nuclei that are well described by the Skyrme
HF calculations. One such reaction is the fusion of 16O+208Pb system. In Fig. 2 we show
an example of microscopic potentials for the 16O+208Pb system at three difference center-of-
mass energies [6]. The dashed curves are the corresponding potentials transformed via the
microscopically calculated effective mass,M(R). We observe that all of the scaled barriers give a
very good description of the fusion cross-section at higher energies suggesting these cross-sections
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are primarily determined by the barrier properties in the vicinity of the barrier peak, whereas for
the extreme sub-barrier cross-sections are influenced by what happens in the inner part of the
barrier and here the dynamics and consequently the coordinate dependent mass becomes very
important (see Fig. 3). Specifically, we can see from Fig. 2 that as the c.m. energy is increased
the ion-ion potential peak increases but the inner part of the barrier becomes narrower. This is
due to the fact that for high energies the system does not have enough time for rearrangements
in the density to occur and the barrier approaches the frozen-density limit. However, at lower
energies substantial density rearrangements occur which modifies the inner part of the barrier.
This modification is important for fusion cross-sections are deep sub-barrier energies.

4.2. Deformed systems
The collision of the 64Ni+132Sn system represents a good example of a collision involving a
deformed (oblate) nucleus, 64Ni and a neutron rich nucleus. Fusion cross-sections for this system
have been experimentally measured [20] and initially a significant discrepancy was observed
with standard coupled-channel calculations. We have used the DC-TDHF method to study
this system [3, 4]. The ion-ion potentials corresponding to two extreme orientations of the 64Ni
nucleus are shown in Fig. 4 as well as an empirical barrier used in barrier penetration calculations
in Ref. [20]. Two important points are observed from this plot. The first is the strong dependence
of the barrier height and location on the alignment of the deformed nucleus. We also see that the
empirical barrier is very close to the equatorial orientation, which is closer to the assumption of
spherical nuclei. The accuracy of our result with no parameters or normalization is impressive.
The second point has to do with the meaning of sub-barrier ; as seen from Fig. 4, while the
experimental energies appear to be all sub-barrier with respect to the spherical barrier, two of
them are above the barrier with respect to the β = 90o potential barrier and the third faces a
considerably narrower barrier. This explains the anomalous observation of enhanced fusion at
these energies.
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obtained from DC-TDHF calculations for
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Figure 5. Total fusion cross section as a
function of Ec.m.. Shown are the experimental
data (filled circles), the latest coupled-channel
calculations [20] including neutron transfer
(blue solid curve), and the DC-TDHF cross
sections (dashed curve).
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4.3. Superheavy systems
Ion-ion interaction potentials calculated using DC-TDHF correspond to the configuration
attained during a particular TDHF collision. For light and medium mass systems as well
as heavier systems for which fusion is the dominant reaction product, DC-TDHF gives the
fusion barrier with an appreciable but relatively small energy dependence. On the other hand,
for reactions leading to superheavy systems fusion is not the dominant channel at barrier top
energies. Instead the system sticks in some dinuclear configuration with possible break-up after
exchanging a few nucleons. For this reason the energy dependence of the DC-TDHF interaction
barriers for these systems is not just due to the dynamical effects for the same final configuration
but actually represent different final configurations. For the same reasons calculations presented
here can only address the capture cross-section for these systems since the long-time evolution
to complete fusion or break-up is beyond the scope of TDHF due to the absence of quantum
decay processes and transitions.
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As an example of superheavy formation from a hot-fusion reaction we have studied the
48Ca+238U system [7]. Hartree-Fock (HF) calculations produce a spherical 48Ca nucleus, whereas
238U has a large axial deformation. The large deformation of 238U is expected to strongly
influence the interaction barriers for this system. This is shown in Fig. 6, which shows the
interaction barriers, V (R), calculated using the DC-TDHF method as a function of c.m. energy
and for three different orientations of the 238U nucleus. The alignment angle β is the angle
between the symmetry axis of the 238U nucleus and the collision axis. Also shown in Fig. 6
is the point Coulomb potential corresponding to this collision. The deviations from the point
Coulomb potential at large R values are due to the deformation of the 238U nucleus. We first
notice that the barriers corresponding to the polar orientation (β = 0o) of the 238U nucleus are
much lower and peak at larger ion-ion separation distance R. On the other hand, the barriers
corresponding to the equatorial orientation of 238U (β = 90o) are much higher and peak at
smaller R values. For the intermediate values of β the barriers rise rapidly as we increase the
orientation angle from β = 0o, as can be seen for β = 45o. The rise in the barrier height as a
function of increasing β values is not linear but seems to rise more rapidly for smaller β values.
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We also see that for lower energies central collisions with polar orientation of 238U are the only
orientations which result in the sticking of the two nuclei, while the equatorial orientations of
238U result in a deep-inelastic collision. Also, shown in Fig. 6 are the experimental energies [21]
for this reaction. We observe that all of the experimental energies are above the barriers obtained
for the polar alignment of the 238U nucleus. For the calculation of the capture cross-section we
need to average over all possible alignments of the 238U nucleus. In Fig. 7 we show the capture
cross-sections for the 48Ca+238U system as a function of Ec.m. energy (black circles). Also,
shown are the experimental cross-sections (red squares) [21].
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