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Abstract. The investigation delves into understanding how the Pauli exclusion principle influences the bare
potential between atomic nuclei through the application of advanced theoretical methodologies. Specifically,
the application of the novel Frozen-Hartree-Fock (DCFHF) technique is employed. The resulting potentials
demonstrate a noticeable repulsion at short distances, attributed to the effects of the Pauli exclusion principle.
To account for dynamic phenomena, such as nucleon transfer processes, the density-constrained time-dependent
Hartree-Fock (DC-TDHF) method is utilized. This approach integrates isovector contributions into the poten-
tial, shedding light on their influence on fusion reactions. Notably, the inclusion of isovector effects leads to a
reduction or enhancement in the inner part of the potential, suggesting a nuanced role of transfer in the fusion
process.

1 Introduction

The Pauli exclusion principle plays a crucial role as a
building block of many-body quantal systems comprised
of fermions. It also induces a "Pauli repulsion" in the in-
teraction between di-nuclear systems. It has been shown
that [1] the Pauli repulsion widens the nucleus-nucleus po-
tential barrier, thus hindering sub-barrier fusion. We in-
vestigate the proton and neutron contributions to the Pauli
repulsion, both in the bare potential neglecting shape po-
larization and transfer between the reactants, as well as in
the dynamical potential obtained by accounting for such
dynamical rearrangements. As the basis of our study we
utilize the Pauli kinetic energy (PKE) obtained by study-
ing the nuclear localization function (NLF) [2]. Recently
this approach has been generalized to incorporate all of
the dynamical and time-odd terms present in the nuclear
energy density functional [3]. This approach is employed
in the density constrained frozen Hartree-Fock (DCFHF)
and in the density constrained time-dependent Hartree-
Fock (DC- TDHF) microscopic methods. The PKE spatial
distribution shows that a repulsion occurs in the neck be-
tween the nuclei when they first touch. Inside the barrier,
neutrons can contribute significantly more to the Pauli re-
pulsion in neutron-rich systems. Dynamical effects tend
to lower the Pauli repulsion near the barrier. Proton and
neutron dynamical contributions to the PKE significantly
differ inside the barrier for asymmetric collisions, which is
interpreted as an effect of multinucleon transfer. The PKE
is shown to make a significant contribution to nuclear in-
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teraction potentials. Protons and neutrons can play very
different roles in both the bare potential and in the dy-
namical rearrangement. Further microscopic studies are
required to better understand the role of transfer and to in-
vestigate the effect of pairing and deformation [4].

2 Formalism

2.1 Microscopic Methods

To explore the influence of the Pauli energy in heavy-
ion fusion reactions, our methodology incorporates mi-
croscopic techniques to calculate the interactions between
nuclei. We base our approach on the energy density func-
tional (EDF) to compute nucleus-nucleus potentials. The
computation of the bare potential begins with the assump-
tion of frozen ground-state densities for each nucleus, de-
rived from the Hartree-Fock (HF) mean-field approxima-
tion. This method leverages the Skyrme EDF for both
the HF calculations and the potential computation, ensur-
ing consistency without introducing additional parameters.
This potential is derived from the spatial integral of the en-
ergy density as a function of the nuclear densities

VFHF(R) =
∫

dr H [ρ1(r) + ρ2(r − R)
] − E[ρ1] − E[ρ2] .

(1)
Here, Pauli exclusion principle’s effects are initially set
aside, except for those emanating from the exchange terms
in the effective interaction, leading to the formulation of
the conventional FHF potential [5–10].

To incorporate the Pauli repulsion into the bare poten-
tial, we adopt the DCFHF method [1]. This approach in-
cludes the Pauli exclusion principle explicitly by allowing
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the reorganization of single-particle states within the com-
bined nuclear density to achieve a minimum energy con-
figuration. This reorganization results in a unique Slater
determinant, with the HF minimization performed under
constraints that maintain the local densities of protons and
neutrons unchanged

δ

〈
H −

∑
q=p,n

∫
dr λq(r)

[
ρ1q (r) + ρ2q (r − R)

] 〉
= 0 . (2)

The DCFHF method yields bare potentials that acknowl-
edge the Pauli repulsion, effectively widening the fusion
barrier and generating a potential pocket at closer dis-
tances not observed in FHF potentials

VDCFHF(R) = ⟨Φ(R)|H|Φ(R)⟩ − E[ρ1] − E[ρ2] . (3)

This difference enables a comparative study of the Pauli
principle’s impact on frozen nuclear densities.

For dynamic nuclear interactions, we turn to the time-
dependent Hartree-Fock (TDHF) calculations. These cal-
culations consider the rearrangement of densities at the
mean-field level, affected by couplings to vibrational and
rotational modes, as well as nucleon transfer mechanisms.
The potentials derived from TDHF calculations, therefore,
reflect both dynamical effects and the Pauli exclusion prin-
ciple. To delve deeper into these dynamics, we employ the
Density-Constrained TDHF (DC-TDHF) method, directly
using the densities from TDHF system evolution while ap-
plying the same constraint procedure as in DCFHF

VDC−TDHF(R) = ⟨Φ(R(t))|H|Φ(R(t))⟩−E[ρ1]−E[ρ2] . (4)

The DC-TDHF approach [7,9,11–13] allows for a nuanced
understanding of microscopic phenomena related to the
Pauli principle, including orbital splitting and its attrac-
tive or repulsive contributions to the potential. However,
it’s crucial to note the inherent limitations of TDHF-based
methods, such as their inability to account for many-body
tunneling effects, which leaves the energy dependency
of the potential at sub-barrier energies as an open ques-
tion. Despite these limitations, the application of DC-
TDHF potentials in calculating near- and sub-barrier fu-
sion cross-sections has demonstrated considerable success
in aligning with experimental outcomes, showcasing the
method’s efficacy in capturing the complex interplay of
nuclear forces at play in heavy-ion fusion reactions.

2.2 Localization function and PKE

This section delves into the concept of the localization
function for nuclear systems [2,3] and its connection to
kinetic energy and the Pauli exclusion principle. The con-
ditional probability for finding a nucleon at r′, shown in
Fig. 1, when we know with certainty that another nucleon
with the same spin and isospin is at r is proportional to

Rqs(r, r′) =
ρq(rs, rs)ρq(r′s, r′s) − |ρq(rs, r′s)|2

ρq(rs, rs)
, (5)

where ρq is the component of the one-body density matrix
with isospin q.

The short-range behavior of Rqs can be obtained us-
ing techniques similar to the local density approxima-
tion [2,3]. The leading term in the expansion yields the
localization measure

Dqsµ = τqsµ −
1
4

∣∣∣∇ρqsµ

∣∣∣2
ρqsµ

−
∣∣∣jqsµ

∣∣∣2
ρqsµ

, (6)

where the densities and currents are given in their most
unrestricted form [3] for µ axis denoting the spin-
quantization axis. This measure is the most general form

1/2

1/2

Figure 1. Schematic depiction of two nucleons at r and r′ with
spin up along the z-axis entering Eq. (5).

that is appropriate for deformed nuclei and without assum-
ing time-reversal invariance, thus also including the time-
odd terms important in applications such as cranking or
TDHF. We can visualize the NLF defined from the local-
ization measure in Eq. (6). It is advantageous to normalize
the localization measure to the interval [0, 1] using [3,14]

Dqsµ (r) =
Dqsµ (r)

τTF
qsµ (r)

, (7)

where the normalization τTF
qsµ (r) = 3

5

(
6π2
)2/3
ρ5/3

qsµ (r) is the
Thomas-Fermi kinetic density. The NLF can then be rep-
resented by

Cqsµ (r) =
[
1 +D2

qsµ

]−1
. (8)

To calculate the Pauli kinetic energy the expression in
Eq. (6) can be dissected into two components. The last two
terms are the kinetic density for a complex valued single
particle state of a given spin s and isospin q. The first term
represents the von Weizsacker kinetic-energy density, and
together, these provide the kinetic density [3]

τ
s.p.
qs =

1
4

∣∣∣∇ρqs

∣∣∣2
ρqs

+

∣∣∣jqs

∣∣∣2
ρqs
. (9)

Thus, one can write

Dqs = τqs − τs.p.
qs . (10)

This equation establishes Dqs as the difference between the
total kinetic energy density and the kinetic energy density
for a single-particle state, being zero for a single nucleon
system. Dqs directly measures the additional kinetic den-
sity brought about by the Pauli exclusion principle, which
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prevents two fermions (such as protons or neutrons in a nu-
cleus) from occupying the same quantum state. The total
PKE for a nuclear system can be obtained by integrating

EP
qs =

ℏ2

2m

∫
d3r Dqs(r) . (11)

Since the PKE for a single nucleus does not contribute to
the Pauli repulsion for the nucleus-nucleus potential, we
can define the difference

∆EP(F)
qµ (R) =

ℏ2

2m

∑
sµ

∫
d3r
[
DDCFHF

qsµ (r,R) − DFHF
qsµ (r,R)

]
,

(12)
where we have subtracted the contribution of the PKE
from the FHF approach and summed over the spin-up and
spin-down components for a given spin projection axis µ.
Indeed, the latter uses the same frozen density as DCFHF,
but it neglects the Pauli exclusion principle between nucle-
ons of different nuclei. The notation P(F) stands for “Pauli
in the Frozen approximation”. A similar expression can be
constructed by subtracting DC-TDHF and DCFHF contri-
butions to identify the dynamical contribution to PKE.

3 Results

One of the interesting results is the observation of Pauli
repulsion directly through NLF. In Fig. 2 we show the
stacked plot of NLF’s for neutron distributions, obtained
with the DCFHF method for spin up along the z-axis,
corresponding to (a) 40Ca+40Ca, (b) 48Ca+48Ca, and (c)
16O+208Pb. The NLF for protons is very similar to that of
the neutrons. The approximate distance between the nuclei
is about 11 fm. We note the effect of the Pauli repulsion
on the single-particle states resulting from the DCFHF cal-
culation, concentrating in the region of touching surfaces.
We should remember that since the densities are frozen
the corresponding density plots will not show any Pauli
effects.

  

(a)

(b)

(c)

Figure 2. Plotted are the NLF’s, obtained with the DCFHF
method for spin up along the z-axis, corresponding to (a)
40Ca+40Ca, (b) 48Ca+48Ca, and (c) 16O+208Pb systems at R ≈
11 fm.

The contributions of protons and neutrons to Pauli re-
pulsion, calculated using Eq. (12) under the assumption

of frozen nuclear densities, are depicted in Fig. 3 for the
40,48Ca+40,48Ca systems. A pronounced increase in Pauli
repulsion is observed inside the barrier for all examined
nuclear systems. The kinetic energy due to the Pauli prin-
ciple becomes significantly large at shorter distances be-
tween the ions. This phenomenon underlies the formation
of a potential well at close separations, suggesting that the
increase in PKE counterbalances the rapid decrease in the
interaction potentials derived from static (frozen) nuclear
densities.
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Figure 3. Neutron and proton contributions to the Pauli repulsion
from Eq. (12) in the frozen approximation for the 40,48Ca+40,48Ca
systems. The insets focus on the barrier top region.

In the system of 40Ca+40Ca, where the number of pro-
tons equals the number of neutrons (N = Z), the contri-
butions from both protons and neutrons to the Pauli en-
ergy are almost identical. For the systems that do not have
extended neutron skins the protons interact earlier due to
the Coulomb interaction, which leads to an early increase
for proton PKE. While the proton contribution remains
relatively constant across the 40,48Ca+40,48Ca systems, the
Pauli contribution noticeably strengthens with an increase
in the neutron number within the barrier. For example, at
a separation of R ≈ 9 fm in the 48Ca+48Ca system, corre-
sponding to the inner turning point of a quantum tunnel-
ing path at roughly 0.9 times the barrier potential (VB), the
contribution is predominantly exerted by neutrons. Con-
sequently, the neutron contribution to the Pauli energy sig-
nificantly surpasses the proton contribution.

A similar trend is observed in the 16O+208Pb system
shown in Fig. 4, where the neutron contribution is roughly
double that of the proton force contribution inside the bar-
rier. This pattern may be attributed to the formation of
neutron skins in neutron-rich nuclei, which results in neu-
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trons interacting first near the barrier’s edge. Therefore,
the Pauli exclusion principle predominantly affects neu-
trons in such configurations. Consequently, one may ex-
pect a fusion hindrance due to the Pauli exclusion prin-
ciple in neutron-rich systems, in particular at sub-barrier
energies.
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Figure 4. Neutron and proton contributions to the Pauli repulsion
from Eq. (12) in the frozen approximation for the 16O+208Pb sys-
tem. The inset focuses on the barrier top region.

In the realm of frozen density frameworks, the DCFHF
approach incorporates antisymmetrization principles to
yield a refined prediction of the Pauli Kinetic Energy
(PKE) at a static, mean-field level. Nonetheless, a dy-
namic examination of nuclear reactions reveals that the
densities of interacting nuclei are dynamic, engaging with
each other prior to surpassing the barrier peak. This inter-
action leads to shape polarization and potential nucleon
exchange between the fragments, while adhering to the
Pauli exclusion principle. Within density functional the-
ory (DFT), such dynamics are modeled through the TDHF
(or TDDFT) evolution. The DC-TDHF method calcu-
lates the nucleus-nucleus potential based on these time-
evolving densities, allowing for a nuanced comparison of
Pauli repulsion effects under static and dynamic condi-
tions, thereby enhancing our understanding of Pauli ki-
netic energy’s dynamic development. To this end we can
define a similar measure

∆EP(D)
qµ (R) =

ℏ2

2m

∑
sµ

∫
d3r
[
DDC−TDHF

qsµ (r,R) − DDCFHF
qsµ (r,R)

]
.

(13)
Figures 5 and 6 display the variance in Pauli energies

as derived from DC-TDHF and DCFHF methodologies
relative to the internuclear distance, R. In every instance,
incorporating dynamics lowers the overall Pauli repulsion
across proton and neutron contributions near the barrier
radius, RB. Given that TDHF formulations stem from a
principle of stationary action, which typically minimizes
action (and since a rise in PKE would increase the action),
it’s logical for the system to seek configurations that di-
minish PKE. Closer internuclear distances, however, wit-
ness a surge in total PKE. It’s important to recognize that
density configurations at smaller R markedly differ from
static densities, making the PKE disparity at R ≤ RB some-
times less significant. Nonetheless, the dynamic-induced
increase in Pauli repulsion at close ranges might reflect

a physical phenomenon, such as nucleon dynamical col-
lectivization, which elevates the PKE as collision partners
coalesce.
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Figure 5. Dynamical contributions to the Pauli repulsion com-
puted from Eq. (13) for the 40Ca+40Ca and 48Ca+48Ca) systems.
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Figure 6. Dynamical contributions to the Pauli repulsion com-
puted from Eq. (13) for the 16O+208Pb system.

Focusing on the differential roles of protons and neu-
trons in the dynamic rearrangement of net PKE, depicted
in Figs. 5 and 6, we find uniform behavior in symmet-
ric reactions (40Ca+40Ca and 48Ca+48Ca), with neutrons
presenting a marginally stronger repulsion at shorter dis-
tances. Conversely, in asymmetric collisions (40Ca+48Ca
and 16O+208Pb), protons exhibit a pronounced increase in
net PKE, while neutrons show minimal or even attractive
contributions, particularly in the 16O+208Pb interaction.
Dynamically, the primary distinction between symmetric
and asymmetric encounters is the activation of nucleon
transfer channels in the latter, spurred by N/Z equilibra-
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tion across nuclei. This quick process, unfolding over ap-
proximately 1 zs, initiates upon nuclear contact [15]. Ex-
pected are proton transfers from lighter (N = Z) to heavier
(N > Z) nuclei, with neutrons moving oppositely, aligning
with experimental observations. The Pauli exclusion prin-
ciple hinders protons from occupying already filled states,
potentially explaining the amplified net PKE due to pro-
ton dynamics. Conversely, neutrons may transfer to vacant
states without contravening the Pauli principle, suggesting
no significant PKE increase. This hypothesis could be fur-
ther explored using TDHF to microscopically analyze the
transfer’s initial and final states, setting the stage for future
investigations.

4 Summary

The significance of the Pauli exclusion principle in for-
mulating and refining models to compute the interaction
between two nuclei has been a focal point of research for a
long time. This interest stems from the observation that
the effects of antisymmetrization were often considered
secondary in many computational strategies. Moreover,
there has been debate over the minimal impact of such ef-
fects at the peak of the interaction barrier. Contrary to
initial beliefs, deviations from this assumption were first
recognized in alpha-nucleus potentials and later in sce-
narios involving higher bombardment energies or energies
significantly below the barrier. Attempts to address these
discrepancies have ranged from straightforward antisym-
metrization of nuclear states―requiring normalization due
to the non-representation of lowest energy configurations
―to adopting empirically modified shallow potential mod-
els that incorporate tailored potential wells.

Here, the novel DCFHF methodology has been ap-
plied to derive pure nucleus-nucleus potentials in reac-
tions involving 40,48Ca+40,48Ca and 16O+208Pb. This tech-
nique comprehensively incorporates antisymmetrization
while optimizing the system’s energy by adjusting or-
bitals against a static density framework. A key feature
of the DCFHF approach is its precise adherence to the
Pauli exclusion principle (at a mean-field approximation
level) without necessitating additional parameters beyond
those used in constructing the Skyrme EDF for the nuclear
mean-field. Compared to traditional FHF methods, which
overlook the Pauli exclusion among nucleons from differ-
ent nuclei, DCFHF allows for the quantification of Pauli-
induced nuclear repulsion, effectively broadening and el-
evating the interaction barrier to impede fusion below the
barrier.

In our research, we’ve utilized the expression for Pauli
kinetic energy derived from nuclear localization function
studies within density functional theory. This reveals that
repulsion predominantly arises in the fragment’s connect-
ing region at distances matching the barrier’s radius. An-
alyzing the Pauli kinetic energy distribution further allows
for the dissection of its proton and neutron components,
highlighting a dominant neutron effect within neutron-rich
systems, thereby proposing additional resistance to sub-
barrier fusion in such contexts.

Explorations into the dynamic behaviors of Pauli ki-
netic energy using the DC-TDHF method have unveiled
that the system tends to navigate towards minimizing Pauli
repulsion near the barrier. Inside the barrier, though, dy-
namic processes generally elevate the Pauli kinetic energy
as nuclei combine and nucleons undergo collectivization.
Notably, the dynamical contributions of protons and neu-
trons to the Pauli kinetic energy significantly diverge in
the examined asymmetric systems, interpreted as a result
of multinucleon transfer propelled by swift N/Z balanc-
ing. The potential for states transfer with favorable Q-
values to mitigate Pauli repulsion highlights a complex in-
terplay that could enhance tunneling probabilities within
the Coulomb barrier.

Looking ahead, investigations will focus on the role of
Pauli repulsion in mid-shell nuclei to understand better the
influences of nuclear pairing and deformation. Addition-
ally, delving into the dynamics of single-particle states in-
volved in transfer mechanisms through microscopic anal-
yses could offer invaluable insights into the nuanced rela-
tionship between transfer processes and Pauli kinetic en-
ergy. A limitation of the current DC-TDHF approach is
that it relies on TDHF trajectories above the Coulomb bar-
rier. To investigate the role of dynamics on Pauli kinetic
energy at sub-barrier energies, one would need to extend
TDHF to account for many-body tunnelling, e.g., with
imaginary time-dependent mean-field methods [16,17].
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