
The TDHF Code Sky3D
Online Documentation

J. A. Maruhn∗

Institut für Theoretische Physik, Goethe-Universität, Max-von-Laue-Str. 1,

60438 Frankfurt am Main, Germany

P.-G. Reinhard

Institut für Theoretische Physik II, Universität Erlangen-Nürnberg,

Staudtstrasse 7, 91058 Erlangen, Germany

P. D. Stevenson

Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

A. S. Umar

Department of Physics and Astronomy, Vanderbilt University,
Nashville, Tennessee 37235, USA

Abstract

The nuclear mean-field model based on Skyrme forces or related density functionals
has found widespread application to the description of nuclear ground states, collec-
tive vibrational excitations, and heavy-ion collisions. The code Sky3D solves the static
or dynamic equations on a three-dimensional Cartesian mesh with isolated or periodic
boundary conditions and no further symmetry assumptions. Pairing can be included in
the BCS approximation for the static case. The code is implemented with a view to allow
easy modifications for including additional physics or special analysis of the results.

Keywords: Hartree-Fock; BCS; Density-functional theory; Skyrme energy functional;
Giant Resonances; Heavy-Ion collisions.

PROGRAM SUMMARY
Title: The TDHF Code Sky3D

Authors: J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, and A. S. Umar.

Program Title: Sky3D

Journal Reference:

Catalogue identifier:

∗Corresponding author. Phone: +49-69-79847873
Email addresses: maruhn@th.physik.uni-frankfurt.de (J. A. Maruhn),

Paul-Gerhard.Reinhard@physik.uni-erlangen.de (P.-G. Reinhard), p.stevenson@surrey.ac.uk
(P. D. Stevenson), sait.a.umar@Vanderbilt.Edu (A. S. Umar)

Preprint submitted to Computer Physics Communications February 5, 2014

Licensing provisions: none

Programming language: Fortran 90. The OpenMP version requires a relatively recent compiler;

it was found to work using gfortran 4.6.2 or later and the Intel compiler version 12 or later.

Computer: All computers with a Fortran compiler supporting at least Fortran 90.

Operating system: All operating systems with such a compiler. Some of the Makefiles and

scripts depend on a Unix-like system and need modification under Windows.

RAM: 1 GB

Number of processors used: no built-in limit, runs under both OpenMP and MPI

Keywords: Nuclear theory, Mean-field models, Nuclear reactions

Classification: 17.16 Theoretical Methods - General, 17.22 Hartree-Fock Calculations, 17.23

Fission and Fusion Processes

External routines/libraries: LAPACK, FFTW3

Nature of problem: The time-dependent Hartree-Fock equations can be used to simulate

nuclear vibrations and collisions between nuclei for low energies. This code implements the

equations based on a Skyrme energy functional and also allows the determination of the

ground-state structure of nuclei through the static version of the equations. For the case of

vibrations the principal aim is to calculate the excitation spectra by Fourier-analyzing the time

dependence of suitable observables. In collisions, the formation of a neck between nuclei, the

dissipation of energy from collective motion, processes like charge transfer and the approach to

fusion are of principal interest.

Solution method: The nucleonic wave function spinors are represented on a three-dimensional

Cartesian mesh with no further symmetry restrictions. The boundary conditions are always

periodic for the wave functions, while the Coulomb potential can also be calculated for an

isolated charge distribution. All spatial derivatives are evaluated using the finite Fourier

transform method. The code solves the static Hartree-Fock equations with a damped gradient

iteration method and the time-dependent Hartree-Fock equations with an expansion of the

time-development operator. Any number of initial nuclei can be placed into the mesh in with

arbitrary positions and initial velocities.

Restrictions: The reliability of the mean-field approximation is limited by the absence

of hard nucleon-nucleon collisions. This limits the scope of applications to collision energies

about a few MeV per nucleon above the Coulomb barrier and to relatively short interaction

times. Similarly, some of the missing time-odd terms in the implementation of the Skyrme

interaction may restrict the applications to even-even nuclei.

Unusual features:

The possibility of periodic boundary conditions and the highly flexible initialization make the

code also suitable for astrophysical nuclear-matter applications.

Running time: The running time depends strongly on the size of the grid, the number

of nucleons, and the duration of the collision. For a single-processor PC-type computer it can

vary between a few minutes and weeks.

2

Contents

1 Introduction 7

2 General purpose and structure 9
2.1 Intended applications . 9
2.2 Specific model implemented . 10

2.2.1 The single-particle basis . 10
2.2.2 Local densities and currents . 11
2.2.3 The energy-density functional . 11
2.2.4 Force coefficients . 13
2.2.5 The single-particle Hamiltonian . 14

2.3 Coupling to external fields . 15
2.4 Static Hartree-Fock . 16

2.4.1 The coupled mean-field and BCS equations 16
2.4.2 Iterative solution . 17

2.5 TDHF . 18
2.5.1 The time-dependent mean-field equations 18
2.5.2 Time development algorithm . 19
2.5.3 Collective excitations . 20
2.5.4 Nuclear reactions . 21

2.6 Observables . 23
2.6.1 Multipole moments . 23
2.6.2 Alternative way to evaluate the total energy 24

2.7 Discretization . 25
2.7.1 Data types . 25
2.7.2 Grid definition . 25
2.7.3 Derivatives . 26
2.7.4 Boundary conditions . 28
2.7.5 Wave function storage . 28
2.7.6 Densities and currents . 30

2.8 Initialization . 30
2.9 Restarting a calculation . 31
2.10 Accuracy considerations . 31

3 Code structure 34

4 Parallelization 36
4.1 OpenMP . 36
4.2 MPI . 36

5 Program unit descriptions 38
5.1 Program Main3D . 38
5.2 Module Coulomb . 39

5.2.1 Purpose . 39
5.2.2 Details on the Coulomb solver for an isolated system 39
5.2.3 Module variables . 40

3

5.2.4 Subroutine poisson . 41
5.2.5 Subroutine coulinit . 41
5.2.6 Subroutine initiq . 41

5.3 Module Densities . 42
5.3.1 Module variables . 42
5.3.2 Subroutine alloc densities . 42
5.3.3 Subroutine add density . 43

5.4 Module Dynamic . 44
5.4.1 Module variables . 44
5.4.2 Subroutine getin dynamic . 44
5.4.3 Subroutine dynamichf . 44
5.4.4 Subroutine tstep . 46
5.4.5 Subroutine tinfo . 46
5.4.6 Subroutine resetcm . 47

5.5 Module Energies . 48
5.5.1 Module variables . 48
5.5.2 Subroutine integ energy . 48
5.5.3 Subroutine sum energy . 49

5.6 Module External . 50
5.6.1 Module variables . 50
5.6.2 Subroutine getin external . 50
5.6.3 Subroutine extfld . 51
5.6.4 Subroutine extboost . 51
5.6.5 Subroutine print extfield . 51

5.7 Module Forces . 52
5.7.1 Module variables and types . 52
5.7.2 Subroutine read force . 53

5.8 Module Fourier . 54
5.8.1 Module variables . 54
5.8.2 Subroutine initfft . 54

5.9 Module Fragments . 55
5.9.1 Module variables . 55
5.9.2 Subroutine getin fragments . 56
5.9.3 Subroutine read fragments . 57
5.9.4 Subroutine read one fragment . 57
5.9.5 Subroutine locate . 57
5.9.6 Subroutine phases . 58
5.9.7 Subroutine twobody init . 58
5.9.8 Subroutine boost fragment . 58

5.10 Module Grids . 59
5.10.1 Module variables . 59
5.10.2 Subroutine init grid . 59
5.10.3 Subroutine init coord . 59
5.10.4 Subroutine sder . 60
5.10.5 Subroutine sder2 . 60
5.10.6 Subroutine setup damping . 60
5.10.7 Subroutine setdmc . 60

4

5.10.8 Subroutine gauss . 60
5.11 Module Inout . 61

5.11.1 Subroutine write wavefunctions 61
5.11.2 Subroutine write densities . 62
5.11.3 Subroutine write one density . 63
5.11.4 Subroutine (Private) . 63
5.11.5 Subroutine plot density . 63
5.11.6 Subroutine sp properties . 63
5.11.7 Subroutine start protocol . 63

5.12 Module Levels . 64
5.12.1 Module variables . 64
5.12.2 Subroutine alloc levels . 65
5.12.3 Subroutines cdervx, cdervy, cdervz 65
5.12.4 Subroutine laplace . 66
5.12.5 Subroutine schmid . 66

5.13 Module Meanfield . 67
5.13.1 Purpose . 67
5.13.2 Module variables . 67
5.13.3 Subroutine alloc fields . 67
5.13.4 Subroutine skyrme . 67
5.13.5 Subroutine hpsi . 69

5.14 Module Moment . 71
5.14.1 Purpose . 71
5.14.2 Module variables . 71
5.14.3 Subroutine moments . 72
5.14.4 Subroutine moment shortprint . 72
5.14.5 Subroutine moment print . 72
5.14.6 Subroutine q2diag . 72

5.15 Module Pairs . 73
5.15.1 Module variables . 73
5.15.2 Subroutine pair . 73
5.15.3 Subroutine pairgap . 74
5.15.4 Subroutine pairdn . 74
5.15.5 Subroutine rbrent . 74
5.15.6 Subroutine bcs occupation . 75

5.16 Module Parallel . 76
5.16.1 Parallelization concept . 76
5.16.2 Module variables . 76
5.16.3 Subroutine (Public) . 76
5.16.4 Subroutine init all mpi . 76
5.16.5 Subroutine allocate nodes . 77
5.16.6 Subroutine collect densities . 77
5.16.7 Subroutine collect sp properties 77
5.16.8 Subroutine finish mpi . 77
5.16.9 Using sequential.f90 . 77

5.17 Module Params . 78
5.17.1 Module variables . 78

5

5.17.2 General parameters . 78
5.17.3 File names and units . 78
5.17.4 Switches . 79
5.17.5 Output control . 79
5.17.6 Globally used variables . 79
5.17.7 Field output control . 79
5.17.8 Fragment number parameters . 80

5.18 Module Static . 81
5.18.1 Module variables . 81
5.18.2 Subroutine getin static . 81
5.18.3 Subroutine init static . 81
5.18.4 Subroutine statichf . 81
5.18.5 Subroutine grstep . 83
5.18.6 Subroutine diagstep . 84
5.18.7 Subroutine sinfo . 84

5.19 Module Trivial . 85
5.19.1 Subroutines cmulx, cmuly, and cmulz 85
5.19.2 Function rpsnorm . 85
5.19.3 Function overlap . 85
5.19.4 Subroutines rmulx, rmuly, and rmulz 86

5.20 Module Twobody . 87
5.20.1 Module variables . 87
5.20.2 Subroutine twobody case . 88
5.20.3 Subroutine getslope . 89
5.20.4 Function divpoint . 89

5.21 Module User . 91

6 Input description 92
6.1 Namelist files . 92
6.2 Namelist force . 92
6.3 Namelist main . 93
6.4 Namelist grid . 94
6.5 Namelist static . 94
6.6 Namelist dynamic . 94
6.7 Namelist extern . 95
6.8 Namelist fragments . 95
6.9 Namelist user . 96

7 Output description 96
7.1 Output and analysis . 96
7.2 File conver.res . 97
7.3 File monopoles.res . 97
7.4 File dipoles.res . 97
7.5 File quadrupoles.res . 97
7.6 File energies.res . 97
7.7 Standard output . 97

7.7.1 Static calculation . 98

6

7.7.2 Dynamic calculation . 98

8 Utilities 99
8.1 Fileinfo . 99
8.2 Inertia . 99
8.3 Cuts . 100
8.4 Overlap . 100
8.5 Tdhf2Silo . 100

9 Running the code 101
9.1 Compilation and linking . 101
9.2 External libraries needed . 101
9.3 Running with OPENMP . 101
9.4 Running under MPI . 102
9.5 Required input . 102

9.5.1 Static calculation . 102
9.5.2 Dynamic calculation . 102

9.6 Test cases . 102

10 Caveats concerning the code 103
10.1 Static calculations . 103
10.2 Dynamic calculations . 103

11 Modifying the code 103
11.1 Modifying the Skyrme force . 104

11.1.1 Direct parameter input . 104
11.1.2 Expanding the database . 104
11.1.3 Adding new physics to the density functional 104

11.2 Using constraints in the static calculation 105
11.3 Analyzing the results in new ways . 106

Index of modules 110

Index of procedures 111

Index of variables 113

Index of namelists 116

1. Introduction

The vast majority of microscopic models of many-body systems rely on a descrip-
tion in terms of the single-particle (s.p.) wave functions. Among them, self-consistent
mean-field models (SCMF) automatically generate the optimal one-body potentials cor-
responding to the s.p. wave functions. A rigorous SCMF is the Hartree-Fock theory (HF)
where the s.p. wave functions are determined variationally for a given two-body inter-
action [1, 2]. A more practical approach is provided by the Density Functional Theory
(DFT), which incorporates the involved many-body effects into effective interactions,

7

or effective energy-density functionals. This is a very efficient and successful scheme,
widely used in electronic systems [3]. Straightforward HF is unsuitable for nuclei be-
cause the free-space two-nucleon force contains a strong short-range repulsion requiring
renormalization in the nuclear medium. For this reason, nuclear SCMFs necessarily em-
ploy effective interactions or functionals although they often carry the label HF as, e.g, in
the Skyrme Hartree-Fock (SHF) method. There are relativistic as well as non-relativistic
approaches. For an extensive review see [4].

The description of dynamical processes is even more demanding than the modeling
of structure. SCMFs are also the first method of choice in this domain. The natural
extension of HF is time-dependent HF (TDHF) which was proposed as early as 1930 in [5].
Earlier applications were restricted to the linearized regime covering small amplitude
motion, see, e. g., [6]. Large scale TDHF calculations became possible in the last few
decades with the increasing computing capacities. Again, as in the static case, true
TDHF calculations make sense only for electronic systems and even there they are very
rare. The overwhelming majority of dynamical SCMF calculations employ, in fact, time-
dependent DFT (TDDFT). In electronic systems, this amounts to the time-dependent
local density approximation (TDLDA) [3], which is widely used in atoms, molecules, and
solids; for examples in nanoparticles see, e. g., [7]. Dynamical SCMFs in nuclei also stay
at the level of TDLDA even if they are often named TDHF which happens particularly
for dynamical calculations using the Skyrme energy functional. Nuclear TDHF started
about forty years ago [8] and has developed since then into a powerful and versatile tool
for simulating a great variety of dynamical scenarios. Earlier applications were based
mainly on non-relativistic TDHF using the effective Skyrme energy functional [9, 10].
Due to higher numerical demands, relativistic calculations appeared somewhat later [11],
but have developed meanwhile equally well to a widely used tool [12, 13].

In this paper, we present a code for TDHF calculations on the basis of the non-
relativistic Skyrme energy functional. The code uses a fully three dimensional (3D) rep-
resentation of wave functions and fields on a Cartesian grid in coordinate space. There
are no symmetry restrictions and the full Skyrme energy functional is used including
the spin-orbit and most important time-odd terms. Such fully-fledged 3D calculations
became possible only over the last decade with the steadily increasing computing capa-
bilities. In fact, early TDHF studies all used restricted representations, axial symmetry
and/or reflection symmetries. This limited the possible applications. TDHF experienced
a revival during the last ten years when unrestricted 3D calculations became possible.
There are several groups performing large scale TDHF studies for various scenarios of
nuclear dynamics, see, e.g., [14–16]. Aside from these studies of nuclear collisions a prin-
cipal application has been to collective vibrations, e.g., [17–20]. In the linear regime
TDHF leads to fully self-consistent RPA, for which though, unlike TDHF, often addi-
tional approximations like the neglect of the Coulomb potential or the spin-orbit terms in
the residual interaction are made. TDHF can also be used to investigate non-linearities
of nuclear vibrations.

For a recent review of vibrational and collisional applications see [21]. Such calcula-
tions have clearly outgrown the developmental stage. It is an appropriate time to give a
broader public access to a 3D TDHF code. This is the goal of this paper. Skyrme HF
covers such a broad range of physical phenomena and is relatively involved that efficient
computational treatment of 3D simulations requires elaborate numerical methods. We
shall make an effort to explain the many necessary ingredients in a comprehensive, and

8

yet compact, manner.
Most recent Skyrme density functionals contain terms such as fractional powers of

the density that cannot be related to a two- or three-body interaction. In that sense, the
present code solves the TDDFT rather than TDHF equations. Nevertheless, we prefer
to keep the name TDHF since it is associated historically with this large field of nuclear
reaction theory.

Although the code may be run as it is and many innovative applications are pos-
sible, we also intend it to be used for exploring new ideas that need a basic HF and
TDHF algorithm, which is implemented in a transparent modern style of programming
and extensively documented (see the accompanying online documentation), allowing for
relatively easy modification. A guide to some possible extensions is given in Sect. 11.

Some recent developments in TDHF which require more extensive modification but
might be implemented on the basis of this code include:

• The extraction of nucleus-nucleus potentials with and without dynamical ef-
fects. Approaches include density-constrained TDHF (DC-TDHF) method [22],
the density-dependent TDHF (DD-TDHF) approach [23], and the frozen HF
method [24].

• The extraction of (multi-)nucleon transfer probabilities using particle number pro-
jection techniques [25].

• The use of novel spatial distributions to excite low-lying dipole states [26].

• The incorporation of fluctuations of one-body observables using the Balian-
Vénéroni variational principle [27–29].

• The inclusion of dynamical pairing correlations at the TDHF+BCS or TDHFB
levels [30–32]

• The inclusion of collision terms with the Extended TDHF or the time-dependent
density matrix approaches [33, 34].

• The generalization of the static HF code to odd particles by the inclusion of the
time-odd terms in the Skyrme interaction [35–37].

2. General purpose and structure

2.1. Intended applications
The code Sky3D solves the static Hartree-Fock as well as the time-dependent

Hartree-Fock (TDHF) equations for interactions of Skyrme-force type in a general three-
dimensional geometry. No symmetries of any kind are assumed, so that the code can be
used for a wide variety of applications in nuclear structure, collective excitations, and
nuclear reactions; of course within the limitations of mean-field theory.

9

2.2. Specific model implemented
The code in the presented version contains a useful selection of terms in the Skyrme

force but by no means all terms that have been included in some recent works. It
should still be useful, because (1) for many interesting applications the interest is semi-
quantitative so that a Skyrme force fitted with the latest models is not necessary —
usually a selection of forces is desired to look at the variability of results, but not a
high-accuracy fit of data; (2) the code is written in such a way that additional terms
can be added easily. The coding corresponds one-to-one to the analytic formulas in most
places except where efficiency demands reordering the calculations.

2.2.1. The single-particle basis
In a mean field theory one seeks to describe the many-body system exclusively in

terms of a set of single-particle wave functions ψα with fractional occupation amplitudes
vα, i.e.

{ψα, vα, α = 1, ...,Ω} (1a)

where Ω denotes the size of the active s.p. space. The occupation amplitude can take
values continuously in the interval [0, 1]. The complementary non-occupation amplitude
is uα =

√
1− v2

α. A formal definition of the BCS mean-field state reads

|Φ〉 =
∏
α>0

(
uα + vαâ

+
α â

+
ᾱ

)
|0〉 (1b)

where |0〉 is the vacuum state, â+
α the generator of a Fermion in state ψα, and ᾱ the

time reverse partner to state α. We will use variation of the BCS amplitudes vα only
in the static part of even-even nuclei where the time reverse partner is unambiguously
defined. In fact, the pairing calculation assumes that the paired states have exactly the
same spatial density distribution.

The time-dependent calculation technically can be run with pairing included. This
is done by keeping the pairing occupation probabilities fixed during the time evolution;
the pairing between states can simply be taken over from the static calculation, although
time-reversal invariance is lost for boosted nuclei. The conservation of total energy
excluding the pairing energy is not impaired for the case of constant occupation, while
the pairing energy is not even computed.

It should be noted, however, that once the wave functions change dynamically, this
approach is not correct as the occupation probabilities will also change with time. In this
case the TDHF-Bogolyubov equations should be used. In addition, the pairing energies
are not computed at all. Using this code as is with pairing included in the time-dependent
case might be useful for schematic or exploratory studies but extreme caution is advised
when interpreting such results.

10

2.2.2. Local densities and currents
The Skyrme-energy-density functional is defined in terms of only a few local densities

and currents. These are the time-even fields

ρq(~r) =
∑
α∈q

∑
s

v2
α|ψα(~r, s)|2 density

~Jq(~r) = −i
∑
α∈q

∑
ss′

v2
αψ
∗
α(~r, s)∇×~σss′ψα(~r, s′) spin-orbit dens.

τq(~r) =
∑
α∈q

∑
s

v2
α|∇ψα(~r, s)|2 kinetic density, (2)

the time-odd fields

~sq(~r) =
∑
α∈q

∑
ss′

v2
αψ
∗
α(~r, s)~σss′ψα(~r, s′) spin density

~q(~r) = =m

{∑
α∈q

∑
s

v2
αψ
∗
α(~r, s)∇ψα(~r, s)

}
current density, (3)

and a field with undefined time parity:

ξq(~r) =
∑
α∈q

∑
s

uαvαψα(~r, s)ψα(~r, s) pairing density (4)

where q labels the nucleon species with q = p for protons and q = n for neutrons. A
local density/current without q index stands for the total quantity, e.g. ρ = ρp + ρn is
the total density, and similarly for the other densities/currents. The variable s indicates
the two spinor components of the wave functions.

2.2.3. The energy-density functional
The mean-field equations solved in the code are based on the widely used Skyrme

energy functional. For recent reviews see [4, 38]. The functional at the level at which it
is used here can be written as

Etot = T + (E0 + E1 + E2 + E3 + Els) + ECoulomb + Epair + Ecorr, (5a)

where the parentheses were used to group the terms arising from the Skyrme force.
The various terms read in detail (all densities and currents defined in Section 2.2.2 are
understood to depend on ~r)

• T : the total kinetic energy calculated as

T =
∑
q

~2

2mq

∫
d3r τq (5b)

with τq the isospin-specific kinetic density of Eq. (2).

• E0: The b0 and b′0-dependent part is

E0 =
∫

d3r

(
b0
2
ρ2 − b′0

2

∑
q

ρ2
q

)
. (5c)

11

• E1: kinetic terms containing the coefficients b1 and b′1:

E1 =
∫

d3r

(
b1[ρτ − ~ 2]− b′1

∑
q

[ρqτq − ~q2]

)
. (5d)

• E2: terms containing the coefficients b2 and b′2. They involve the Laplacians of the
densities.

E2 =
∫

d3r

(
−b2

2
ρ∆ρ+

b′2
2

∑
q

ρq∆ρq

)
. (5e)

• E3: The many-body contribution is given by

E3 =
∫

d3r

(
b3
3
ρα+2 − b′3

3
ρα
∑
q

ρ2
q

)
. (5f)

• Els: the spin-orbit energy

Els =
∫

d3r

(
−b4[ρ∇ · ~J + ~s · (∇× ~)]

− b′4
∑
q

[ρq∇ · ~Jq + ~sq · (∇× ~q)]
) (5g)

• EC: the Coulomb energy. It consists of the standard expression for a charge dis-
tribution in its own field (Hartree term) plus the exchange term in the Slater
approximation [39]. The formula is

EC =
e2

2

∫
d3rd3r′

ρp(~r)ρp(~r′)

|~r − ~r′|
−
∫

d3r
3e2

4

(
3
π

) 1
3
ρ4/3
p (5h)

where e is the elementary charge with e2 = 1.43989 MeV·fm.

• Epair: the pairing energy. It consists of a contact pairing interaction involving the
pairing densities ξq augmented by an optional density dependence. The formula is

Epair =
1
4

∑
q∈{p,n}

Vpair,q

∫
d3r|ξq|2

[
1− ρ

ρ0,pair

]
. (5i)

It contains a continuous switch, the parameter ρ0,pair. A pure δ-interaction (DI),
also called volume pairing, is recovered for ρ0,pair −→ ∞. The general case is the
density dependent δ-interaction (DDDI). A typical value near matter equilibrium
density ρ0,pair = 0.16 fm−3 concentrates pairing to the surface. The most flexible
choice is to consider ρ0,pair as an additional free parameter. Actual adjustments
with this option deliver a form of the pairing functional which stays in between the
extremes of volume and surface pairing [40]. The implementation in the code is
discussed in Section 5.15.

12

The term Ecorr stands for all additional corrections from correlations beyond the
mean field that might be added. Most calculations include at least the center-of-mass
correction Ecm. For deformed nuclei this should be augmented by a rotational correction
and for soft nuclei by correlations from all low-energy quadrupole motions [41]. So far,
these correlations are usually added a posteriori after static calculations. This proce-
dure is associated with setting the switch zpe=1 which is the standard option adopted
here. A fully variational treatment and a dynamical propagation of the c.m. correction
is extremely involved and usually not considered. The other strategy is to modify the
nucleon mass by m −→ m−m/A and to include this simplified correction in the varia-
tional treatment thus avoiding the a posteriori correction. This way is chosen in a couple
of traditional parametrizations, e.g., in SkM∗ [42]. We keep this option in case of static
calculations for consistency and associate it with zpe=0.

Using a center-of-mass correction is desirable for static calculations, it is disputable for
vibrational excitations, and runs fully into inconsistencies in collisions and fragmentation
as it employs only the total mass number A and cannot account for the masses of the
fragments. Therefore all dynamical runs are done with

Ecm = 0 . (6)

An inconsistency may occur if zpe=0 was used in the static calculation providing the input
for the dynamical run because the setting m −→ m − m/A is not used in dynamics.
In order to safely suppress the c.m. correction in statics and dynamics, we introduce
an additional switch turnoff zpe in the input, which turns off the zero-point energy
correction irrespective of what value is given to zpe in the force definition. This allows
the use of forces with zpe=0 also for collisions. It should be pointed out also that
there are newer Skyrme parametrizations like Sly4d [43, 44] and UNEDF [45] that are
fitted without any center-of-mass correction and are thus specially intended for collision
calculations.

For some further considerations on the c.m. correction in TDHF see [?].
The functional in the above form contains the minimal number of terms which are

needed to guarantee Galilean invariance [35, 38] and so to allow performance of TDHF
calculations which respect all basic conservation laws. We ignore the tensor spin-orbit
terms and spin-spin couplings [4, 38, 46]. These may be important for magnetic excita-
tions [38] and odd nuclei [47] which are, however, not the prime focus of TDHF studies.

2.2.4. Force coefficients
The above formulation in terms of the Skyrme energy functional introduces the force

parameters b0, b′0, ... b′4 naturally as the factors in front of each contribution in the terms
(5c-5g). Traditionally, the functional is deduced from a Skyrme force which is a density-
dependent, zero-range interaction [48]. The t and x coefficients in this Skyrme-force

13

definition are related to the b coefficients in the functional definition as

b0 = t0
(
1 + 1

2x0

)
b′0 = t0

(
1
2 + x0

)
b1 = 1

4

[
t1
(
1 + 1

2x1

)
+ t2

(
1 + 1

2x2

)]
b′1 = 1

4

[
t1
(

1
2 + x1

)
− t2

(
1
2 + x2

)]
b2 = 1

8

[
3t1

(
1 + 1

2x1

)
− t2

(
1 + 1

2x2

)]
b′2 = 1

8

[
3t1

(
1
2 + x1

)
+ t2

(
1
2 + x2

)]
b3 = 1

4 t3
(
1 + 1

2x3

)
b′3 = 1

4 t3
(

1
2 + x3

)
b4 = 1

2 t4

(7)

The coefficient b′4 is usually fixed as b′4 = 1
2 t4 for most traditional Skyrme forces. More

recent variants of Skyrme forces (SkI3 etc.) handle it as a separate free parameter [49].
In addition to the b and b′ parameters, there is the power coefficient in the (originally)
three-body term, which is usually called α, but in the code is referred to as power. The
input of the force to the code is done in terms of the ti, xi parameters, see Section 5.7.

2.2.5. The single-particle Hamiltonian
The mean-field Hamiltonian ĥ is derived from the energy functional of Section 2.2.3

by variation ∂ψ∗αE = ĥψα. It reads in detail

ĥq = Uq(~r)−∇ · [Bq(~r)∇] + i ~Wq · (~σ ×∇) + ~Sq · ~σ

− i
2

[
(∇ · ~Aq) + 2 ~Aq · ∇

]
,

(8a)

with q ∈ {p, n} as usual distinguishing the different Hamiltonians for protons and neu-
trons. For the protons the Coulomb potential is also added. The first term is the local
part of the mean field, which acts on the wave functions like a local potential. It is
defined as

Uq = b0ρ− b′0ρq + b1τ − b′1τq − b2∆ρ+ b′2∆ρq

+ b3
α+2

3 ρα+1 − b′3 2
3 ρ

αρq − b′3 α3 ρ
α−1

∑
q′

ρ2
q′

− b4∇ · ~J − b′4∇ · ~Jq .

(8b)

Next comes the “effective mass”, which replaces the standard ~2

2m factor by the isospin
and space-dependent expression

Bq =
~2

2mq
+ b1ρ− b′1ρq. (8c)

Note that the Skyrme force definitions contain the first term (nucleon mass) as a param-
eter which varies slightly from parametrization to parametrization and may be different
for protons and neutrons. The spin-orbit potential is

~Wq = b4∇ρ+ b′4∇ρq . (8d)
14

The above three terms involve the time-even densities. Dynamical effects come into
play with the next terms which include the time-odd contributions from current and
spin-density:

~Aq = −2b1~+ 2b′1~q − b4∇× ~s− b′4∇× ~sq. , (8e)
~Sq = −b4∇× ~− b′4∇× ~q . (8f)

2.3. Coupling to external fields
For the dynamic case, the system can also be coupled to an external excitation field,

to study collective response such as in giant resonances. The present code only imple-
ments a very simple case, since it is expected that most serious applications will need
modifications, which are quite easy to incorporate.

The external field is introduced as a time-dependent, local operator

ĥq −→ ĥq + Uq,ext(~r, t) , Uq,ext = η f(t)Fq(~r) , (9a)

where f(t) carries the temporal profile of the excitation mechanism, Fq(~r) is some local
operator, and η tunes the overall strength. The spatial distribution Fq(~r), is allowed to
be different for the two isospins q. Typical examples are isoscalar and isovector multipole
operators as, e.g., the isoscalar quadrupole Fq(~r) = 2z2 − x2 − y2.

The prefactor η is a strength parameter which allows scanning different excitation
strengths easily while keeping the temporal and spatial profiles the same. It should be
noted that the absolute magnitude of the perturbing potential by itself usually has little
direct meaning. What counts is the excitation energy caused by the perturbation and
subsequently the magnitude of vibrations in the observables (such as the time-dependent
quadrupole moment). An exception is, e. g., the simulation of the close approach of
another nucleus that stays external to the computational grid, where the potential is
uniquely defined.

One important point remains to be noted concerning the spatial profile Fq(~r). This
can be illustrated by the quadrupole operator. Let us assume an instant where A > 0
and f(t) > 0. For then the operator ∝ 2z2−x2− y2 leads to a perturbing potential Uext

which is binding in z-direction but asymptotically unbound in the x- and y-directions.
This can cause unphysical effects in case of large strengths and/or numerical boxes. For
this reason it is useful to have a cut-off by a Woods-Saxon like function according to [50]

Fq(~r)→
Fq(~r)

1 + e(r−r0)/∆r
, (9b)

where r0 and ∆r are parameters describing a transition region sufficiently outside the
nucleus, but also sufficiently small to maintain binding.

Another problem associated with the external field is that in general it will not be
periodic but instead have discontinuities on the boundary when crossing into the neigh-
boring cell. If damping is sufficiently strong, the field may be practically zero on the
boundary and thus become periodic. Another solution for this problem is to make the
field explicitly periodic by replacing the coordinates with periodic substitutes. The ex-
act formulation depends on the specific field used; for the above-mentioned quadrupole
operator, which depends only on the squares of the coordinates, e. g., substituting

x2 → sin2 (πx/xL) , (9c)
15

with xL = nx∆x the period interval, will provide the proper behavior as the sine squared
has a period of π and there is no unphysical decrease of this function near the boundary.
Of course the analogous transformation has to be applied to y and z.

The time dependence f(t) is modeled as a short pulse centered around some excitation
frequency ω. The code allows a choice between two pulse envelopes:

1. A Gaussian of the form

f(t) = exp
(
−(t− τ0)2/∆τ2

)
cos(ω(τ − τ0)) , (9d)

with peak time τ0 and width ∆τ .
2. A cosine squared function defined via

f(t) = cos

(
π

2

(
t− τ0
∆τ

)2
)
θ (∆τ − |t− τ0|) cos(ω(τ − τ0)) , (9e)

which is confined to the intervals t ∈ (τ0 − ∆τ, τ0 + ∆τ). This envelope is also
characterized by a peak time of τ0 and width ∆τ .

Broad envelopes provide a high frequency resolution and so concentrate the excitation
around the driving frequency ω. Short pulses lose frequency selectivity and excite a broad
band of frequencies.

The extreme case is an infinitely short pulse, ∆τ −→ 0. It amounts eventually to
an instantaneous boost of the initial wave functions which can be expressed as a phase
factor according to

ψk(~r, s, t=0) = ψk,0(~r, s) exp (−iηFq(~r)) , (10)

where ψk,0 stands for the stationary wave function before boost. This instantaneous
boost, being infinitely short, is insensitive to the problem of asymptotically unstable
potentials and allows the use of a driving field Fq without damping (9b) which, in turn,
simplifies spectral analysis (see Section 2.5.3).

The effect of the boost (10) can be understood by virtue of the Madelung decompo-
sition of a complex wave function φ(~r) = χ(~r) exp(iS(~r)) with χ and S being real. A
straightforward calculation leads to the probability flow density as ~ = ~χ2∇S/m. Di-
viding by the density χ2 then produces the “probability-flow velocity” ~v = ~∇S/m. An
illustrative example is the plane wave where χ =constant and S = ~k · ~r which yields the
correct result ~v = ~~k/m. In the present case, assuming that the static wave functions
themselves can be written as real functions, we get an initial velocity ~v = −∇Fq, i. e.,
just in the direction of the classical force resulting from the “velocity potential” Fq(r).

2.4. Static Hartree-Fock
2.4.1. The coupled mean-field and BCS equations

The stationary equations are obtained variationally. Variation with respect to the
single-particle wave functions ψα yields the mean field equations [2, 51]

ĥψα = εαψα , (11a)

16

where ĥ is the mean-field Hamiltonian (8a) and εα is the single-particle energy of state
α. Simultaneous variation of ψα together with the occupation amplitude vα yields
the Hartree-Fock-Bogolyubov equations [4, 51, 52] which complicate Eq. (11a) by non-
diagonal terms on the right-hand-side [53]. We employ here the BCS approximation
which exploits time-reversal symmetry where each single-particle state has a time re-
versed partner ψα ↔ ψα as was already implied in the pairing densities ξq in Eq. (4).
Each pair of time-conjugate states is associated with an occupation amplitude vα. These
are determined by the BCS equation (εα − εF,qα)

(
u2
α − v2

α

)
= ∆αuαvα which can be

resolved to a closed expression for the occupation amplitudes as

v2
α =

1
2

(
1− εα − εF,qα√

(εα − εF,qα)2 + ∆2
α

)
, (11b)

∆α =
1
2
Vpair,qα

∫
d3r ψ+

αψαξqα

[
1− ρ

ρ0,pair

]
, (11c)

εF,q :
∑
α∈q

v2
α = Nq . (11d)

qα denotes the nucleon type to which state α belongs, α ∈ q means all states of type q,
and Nq is the number of nucleons of type q (identified as Np = Z and Nn = N). The
Fermi energies εF,qα serve to regulate the average particle number to the required values
Nq. Here, the space of pairing-active states is just the space of states actually included
in the calculation. The results of BCS pairing depend slightly on the size of the active
space [51, 52]. We recommend using about

Nq +
5
3
N2/3
q

single-nucleon states, which comes closest to the dynamical pairing space of Ref. [54].

2.4.2. Iterative solution
The coupled mean-field and BCS equations (11) are solved iteratively. The wave

functions are iterated with a gradient step which is accelerated by kinetic-energy damp-
ing [55, 56]

ψ(n+1)
α = O

{
ψ(n)
α − δ

T̂ + E0

(
ĥ(n) − 〈ψ(n)

α |ĥ(n)|ψ(n)
α 〉

)
ψ(n)
α

}
(12)

where T̂ = p̂2/(2m) is the operator of kinetic energy, O means orthonormalization of the
whole set of new wave functions, and the upper index indicates the iteration number.
Note that this sort of kinetic-energy damping is particularly suited for the fast Fourier
techniques that we use in the present code. The damped gradient step has two numerical
parameters, the step size δ and the damping regulator E0. The latter should be chosen
typically of the order of the depth of the local potential Uq. In practice, we find E0 = 100
MeV a safe choice. The step size is of order of δ = 0.1...0.8. Larger values yield faster
iteration, but can run more easily into pathological conditions. The optimum choice
depends somewhat on the Skyrme parametrization. Those with effective mass m∗/m ≈ 1
allow larger δ values. Low m∗/m may require a reduction in the step size.

17

After each such wave function step, the BCS equations (11b–11d) are solved with
εα = 〈ψα|ĥ|ψα〉, the densities are updated (Eqs. 2-4), and new mean fields computed (8a-
8f). This then provides the starting point for the next iteration. The process is continued
until sufficient convergence is achieved. We consider as the convergence criterion the
average energy variance, or fluctuation, of the single particle states

∆ε =

√∑
α ∆ε2

α∑
α 1

, (13a)

∆ε2
α = 〈ψα|ĥ2|ψα〉 − ε2

α , (13b)

εα = 〈ψα|ĥ|ψα〉 . (13c)

The single particle energy εα is defined here as an expectation value. It finally becomes
an eigenvalue in Eq. (11a) if the iteration has converged to ∆εα ≈ 0. Vanishing total
variance ∆ε signals that we have reached minimum energy, i.e. a solution of the mean-
field plus BCS equations. One has to be aware, however, that this may be only a local
minimum (isomeric state). It requires experience to judge whether one has found the
absolute energy minimum. In case of doubt, one should redo a couple of static iterations
from very different initial configurations.

This raises the question of how to initialize the iteration. We take as a starting point
the wave functions of the deformed harmonic oscillator (see point 1 in Section 2.8). These
are characterized by ~n = (nx, ny, nz), the number of nodes in each direction. We stack
the wave functions in order of increasing oscillator energy ε(0)

α = ~ωxnx + ~ωyny + ~ωznz
and stop if the desired number of states is reached. The deformation of the initializing
oscillator influences the initial state in two ways: first, through the deformation of the
basis wave functions as such, and second, through the energy ordering of the ε(0)

α and
corresponding sequence of levels built. Variation of initial conditions means basically a
variation of the oscillator deformation. For example, the iteration will most probably
end up in a prolate minimum if the initial state was sufficiently prolate, and in an oblate
minimum after an oblate initial state. It depends on the nucleus which one is the absolute
minimum.

2.5. TDHF
2.5.1. The time-dependent mean-field equations

The TDHF equations are determined from the variation of the action

S =
∫

dt

[
E[{ψα}]−

∑
α

〈ψα|i∂t|ψα〉

]
,

with respect to the wave functions ψ+
α where the energy is given as in Eq. (5a-5h) [2].

This yields the TDHF equation
i∂tψα = ĥψα , (14)

where ĥ is, again, the mean-field Hamiltonian (8a). For simplicity, we are not considering
variation of the occupation amplitude in the time-dependent case. The occupation am-
plitudes obtained from static iteration are kept frozen during time evolution. For studies
of mean-field flow at moderate excitations (heavy-ion collisions, giant resonances) this

18

approximation is legitimate. However, a study of truly low energy dynamics in the
range of a few MeV (soft vibrations, fission) requires a full time-dependent Hartree-
Fock-Bogolyubov treatment and should not be undertaken with the present code.

2.5.2. Time development algorithm
The TDHF equation (14) can be formally resolved into an integral equation as

|ψα(t+∆t)〉 = Û(t, t+∆t)|ψα(t)〉 (15a)

Û(t, t+∆t) = T̂ exp

(
− i

~

∫ t+∆t

t

ĥ(t′) dt′
)
, (15b)

where Û is the time-evolution operator and T̂ the time-ordering operation. This time
evolution is unitary, thus conserving orthonormalization of the single-particle wave func-
tions, and it conserves the total energy (5a) provided that there are no time-dependent
external fields. To convert this involved operator into an efficiently computable but also
sufficiently accurate form a predictor-corrector strategy is used:

1. In a first step (predictor), we determine the single-particle Hamiltonian at midtime
ĥ(t+∆t/2). To that end, a trial step by ∆t

ψ̃α = exp
(
− i

~ ĥ(t) ∆t
)
ψα(t) (16)

is performed using the mean field ĥ(t) at initial time t. The density ρ̃ and similarly
also other densities and currents at t+∆t are accumulated from the wave functions
ψ̃α, which can be discarded immediately, so that it is not necessary to store a
complete second set of wave functions. They are used to compute an estimate for
the densities at half step ρpre = (ρ(t)+ ρ̃)/2 and analogously for the other densities
and currents. These are then used to calculate the estimated Hamiltonian ĥpre at
t+ ∆t/2 according to Eq. (8a-8f).

2. This is used to perform the corrector step to advance the wave functions to the end
of the time step (again with frozen Hamiltonian, but now h̃pre)

ψα(t+∆t) = exp
(
− i

~ ĥpre ∆t
)
ψα(t) . (17)

3. In both cases the operator exponential is evaluated by a Taylor series expansion
up to order m:

exp
(
− i

~ ĥ∆t
)
ψ ≈

m∑
n=0

(−i∆t)n

~n n!
ĥnψ , (18)

where ĥ is the actual mean field in step (16), or (17) respectively. ĥnψ is computed
in straightforward manner by successive application of the mean field Hamiltonian,
i.e. ĥnψ = ĥ(...(ĥ︸ ︷︷ ︸

ntimes

ψ)...).

The Taylor expansion spoils strict unitarity of the exponential exp
(
− i

~ ĥ∆t
)

and energy
conservation. We turn this flaw into an advantage and use norm conservation as well

19

as energy conservation (if it applies) as counter-check of the quality of the step along
the propagation. The reliability depends, of course, on a proper choice of the numerical
parameters in this step which are the step size ∆t and the order of the Taylor expansion
m. The step size is limited by the maximum possible kinetic energy and by the typical
time scales of changes in the mean field ĥ. The maximum kinetic energy, in turn, depends
on the grid spacing as ∝ ∆x−2. A choice of ∆t = 0.1−0.2fm/c is applicable in connection
with ∆x = 0.7 − 1/fm. For the order of Taylor expansion, one needs at least m = 4.
Although there are formal reasons for m = 4 [57], in practice m > 4 may also be used,
but choosing m > 6 is not so efficient for the values of ∆t considered here.

2.5.3. Collective excitations
Giant resonances are prominent excitation modes of nuclei. Best known is probably

the isovector giant dipole resonance, but there are many more modes depending on isospin
and angular momentum. The typical resonance energies lie in a region from 10 to 30 MeV
where the present TDHF code with frozen occupation numbers is applicable because the
relevant energy range lies far above the pairing gap (1–2 MeV). The generation of these
modes is particularly simple within the present TDHF treatment. One first produces a
stationary state as outlined in Section 2.4 and then triggers the excitation by a time-
dependent external field as described in Section 2.3. A broad pulse allows triggering
particular excitation energies. An infinitely short pulse amounts to an instantaneous
boost.

The boost is a generic excitation of a system which gives the same weight to all
frequencies. It is thus ideally suited for analyzing in an unbiased manner the excitation
spectra of a system. This, in turn, allows a thorough spectral analysis. To obtain the
spectral distribution of isovector dipole strength, one applies a boost with small strength
η and Fq = D̂ ∝ r1Y10τz the isovector dipole operator. The Slater determinant |Φ(t)〉
is propagated in TDHF for a sufficiently long time while recording the dipole moment
D(t) = 〈Φ(t)|D̂|Φ(t)〉. The dipole strength is finally extracted from the Fourier transform
D̃(ω) as SD(ω) = =

{
D̃(ω)

}
/η. Note that this is valid only in the linear case, i. e., if

the amplitude of the vibration if proportional to the boost velocity [59, 60]. This should
be checked in the calculations.

The straightforward Fourier transform leads to artifacts if the dipole signal has not
fully died out at the end of the simulation time. In the general case, some filtering is
necessary to suppress artifacts from cutting the signal at a certain final time [58]. In
practice, it is most convenient to use filtering in the time domain by damping the signal
D(t) towards the final time. A robust choice is

D(t) −→ Dfil(t) = D(t) cos
(
π

2
t

tfinal

)nfil

(19)

where tfinal is the final time of the simulation. This guarantees that the effective signal
Dfil vanishes at the end of the interval. The cosn profile switches off gently and leaves as
much as possible from the relevant signal at early times. The parameter nfil determines
the strengths of filtering. Value of order of 4–6 are recommended to suppress the artifacts
safely. For a detailed description of this spectral analysis see [59]. For typical applications
in nuclear physics see [60]. It is to be noted that the code does not include this final
step of spectral analysis. The time dependent signals are printed on the protocol files

20

monopoles.res, dipoles.res, and quadrupoles.res (see Section 5.17.3). It is left to
the user to perform the final steps towards a spectral distribution. A word is in order
about tfinal. It determines the resolution of the spectral analysis. The corresponding
energy bins are given by δEexc = ~π/tfinal. Windowing effectively reduces the time span
in which relevant information is contained and roughly doubles the relevant δEexc. For
example, to obtain a spectral resolution of 1 MeV, one needs to simulate up to about
1200 fm/c.

Although excitation spectra are one of the most basic properties of the system, there
are many other dynamical features of interest. The multipole signals in the time domain
(printed in the protocol files) are as such interesting quantities. One can have, e.g.,
a look at cross-talk between the multipole channels. It is particularly interesting to
study excitation dynamics for varying excitation strength η, from the regime of linear
response (small η) deep into the non-linear regime. It is inefficient to perform a full three-
dimensional TDHF calculation to obtain linear-regime excitation spectra for spherical
nuclei. This is better done in a dedicated RPA calculation on a spherical basis (see,
e.g., [61]) for which there exist an overwhelming multitude of codes. The realm of TDHF
calculations of nuclear excitations are spectra in deformed systems, stability analysis of
exotic configurations, and in particular non-linear dynamics.

There are many more details worth looking at. One may check the densities and
currents to visualize the flow pattern associated with a mode. A most elaborate analysis
deals with a phase-space picture of nuclear dynamics by virtue of the Wigner transfor-
mation [62]. The code allows saving all ingredients needed for such elaborate analysis in
dedicated output files, see Section 8.5. It is left to the user to work out the further steps
of the analysis.

A serious problem that can occur in collective excitation studies is the evaporation
of particles at higher excitation energies. Some of the single-particle wave functions
become unbound and move towards the boundaries for the computational box with a
non-negligible part of their probability distributions. Since the code assumes periodic
boundary conditions for the wave functions (for details see Sect 2.7.4), effectively the
particles reenter the box from the opposite side and can interact with the nucleus again,
leading to a spurious revival of the excitation [20, 63]. This effect can be reduced in
several ways; for a brief discussion see Sect. 2.7.4.

2.5.4. Nuclear reactions
Collisions of nuclei are a prime application of nuclear TDHF. They were, in fact, the

major motivation for its realization [10, 64]. The present code is designed to initialize
such collision scenarios in a most flexible manner. We start by explaining the simplest
case of a collision of two nuclei. First, we prepare the ground states of the two nuclei as
explained in Section 2.4.2. The static solutions are centered around the origin ~r = 0 of

their initial grid. The static wave functions ψ(stat)
α,I where I = 1, 2 labels the two nuclei

are shifted to new centers ~RI where the distance |~R2 − ~R1| should be sufficiently large
that the nuclei have negligible overlap and negligible Coulomb distortion from the other
nucleus (the latter condition usually only loosely fulfilled). The shifted wave functions

ψ
(stat)
α,I (~r − ~RI , s) are obtained by interpolation on the grid. The interpolation is done

by transforming to momentum space, applying translation factors, and going back. It
is obvious that the collisions need a larger numerical box than the static Hartree-Fock

21

calculations. Thus, we may compute the static wave functions on a smaller box since we
are shifting and interpolating the result anyway for dynamical initialization.

It should be noted that the nuclei may be placed at arbitrary positions in the new
grid. It is highly recommended, however, to displace them by an integer number of grid
points from the original position, since otherwise the interpolation may lead to some
degree of excitation. In practice, if the center of mass in the static calculation was at the
origin, the new position should of the form (mx dx, my dy, mz dz) with integer factors
mx etc. If for some reason this is not desired, accuracy can be restored by placing the
nucleus alone in the larger grid and running this as input for a static calculation with a
sufficient number of timesteps before using the resulting wave functions as input for the
dynamic one.

At this point we have the nuclei resting at a safe distance. To set them in motion
we need to give each nucleus a momentum ~P1 = −~P2 (note that the total momentum
of the combined system still vanishes). Consequently, the initial configuration is given
by the Slater state built from the shifted and boosted single-particle wave functions (see
fragment initialization, point 2 in Section 2.8)

ψα,1(~r, s; t=0) = ei~p1·~rψ
(stat)
α,1 (~r − ~R1, s), ~p1 = ~P1

A1
,

ψα,2(~r, s; t=0) = ei~p2·~rψ
(stat)
α,2 (~r − ~R2, s), ~p2 = ~P2

A2
.

(20)

The distance between the nuclei is large, but inevitably finite. This may induce minor
violations of orthonormality. Thus the full set of wave functions (20) is orthonormalized
as a final step of initial preparation.

The occupation amplitudes vα,I are taken over from the static solution and frozen
along the dynamical evolution. In fact, most of the collision studies will be principally
to explore the dynamical features in the regimes of fusion and inelastic collisions. It is
then recommended to use the conceptually simplest and most robust strategy, namely to
start from simple Slater states (not BCS states) for the two nuclei. This means that in
most cases the static solution is calculated without pairing, fixing vα = 1 and including
just as many states as there are nucleons.

The above example deals with two initial fragments. The code is more flexible than
that. It allows an initial state composed from several fragments. The strategy remains
the same as for the binary system. It is simply repeated for each new fragment. For
details see Section 5.9.

The time evolution is performed as outlined in Section 2.5.2. It requires some ef-
fort to visualize the complex dynamics which emerges in collisions. A rough picture is,
again, provided by the multipole moments. The quadrupole moment, e.g., can serve as
a measure of stretching of the total system. Small values indicate a compound nucleus
while asymptotically growing values signal fragmentation. One may want, particularly
in case of collisions, more detailed pictures of the flow as, e.g., snapshots of the density
of current distributions and, ultimately, a full phase space picture [62]. Material for that
can be output on demand, as detailed in Section 8.5. Again, we leave it to the user to
extract the wanted information and to prepare it for visualization.

In nuclear collisions at higher energies the emission of particles can also cause prob-
lems; in those cases one better uses absorbing boundary conditions. See Sect. 2.7.4 for
details.

22

2.6. Observables
It was already mentioned in Sections 2.5.3 and 2.5.4 which observables may be used

to analyze nuclear dynamics. We here briefly summarize the observables computed and
output in the code and indicate how further observables may be extracted. Basic features
of the description by the Skyrme energy-density functional are, of course, energy and
densities.

2.6.1. Multipole moments
The gross features of the density distribution are well characterized by the multipole

moments. The most important moment is the center of mass (c.m.)

~R(type) =
∫

d3r ~r ρ(type)(~r)
A

, (21a)

where A =
∫

d3r ρ(~r) is the total mass number and “type” can refer to proton c.m. from
ρp, neutron c.m. from ρn, isoscalar or total c.m. from the total density ρ = ρp+ρn ≡ ρT=0,
or isovector moment related to the isovector density ρT=1 = N

A ρp −
Z
Aρn. The definition

of ~R(type) directly employs the Cartesian coordinate ri. The same holds for the Cartesian
quadrupole tensor

Q(type)
kl =

∫
d3r

(
3(rk −Rk)(rl −Rl)− δkl

∑
i

(ri −Ri)2

)
ρ(type)(~r) , (21b)

again for the various types as discussed above. The matrix Qkl is not invariant under
rotations of the coordinate frame. There is a preferred coordinate system: the system
of principle axes. It is obtained by diagonalizing Qkl. The quadrupole matrix in the
principle-axis frame thus has only three non-vanishing entries Qxx, Qyy, and Qzz together
with the trace condition Qxx +Qyy +Qzz = 0.

For the quadrupole case the spherical moments defined as

Q
(type)
2m =

∫
d3r r2Y2m ρ

(type)(~r − ~R) , (21c)

are also useful, where r = |~r| and Y2m are the spherical harmonics. They are often
expressed as dimensionless quadrupole moments

am =
4π
5
Q2m

AR2
, (21d)

with R = r0A
1/3 a fixed radius derived from the total mass number A. This, again, could

be defined for any “type”, but is used, in practice, mainly for the isoscalar moments.
The dimensionless moments have the advantage of being free of an overall scale which

was removed by the denominator AR2. They allow characterization of the shape of the
nucleus. However, the general am are not invariant under rotations of the coordinate
frame. We obtain a unique characterization by transforming to the principle-axis system.
These are defined by the conditions a±1 = 0 and a2 = a−2. There remain only two shape

23

parameters a0 and a2. These are often reexpressed as total deformation β and triaxiality
γ, often called Bohr-Mottelson parameters, through

β =
√
a2

0 + 2a2
2 , γ = atan

(√
2 a2

a0

)
. (21e)

Triaxiality γ is handled like an angle. It can, in principle, take all values between 0o and
360o, but physically relevant parameters stay in the 0 . . . 60◦ range. The other sectors
correspond to equivalent configurations [51].

The monopole moment just corresponds to the total particle number, so to describe
monopole vibrations usually the r.m.s. radii or their squares are employed. The r.m.s.
radii are defined as

r(type)
rms =

√∫
d3r (~r − ~R)2 ρ(type)(~r)∫

d3r ρ(type)(~r)
(21f)

where “type” can be proton, neutron, or total. The isovector variant does not make sense
here.

We supply printouts of all the above variants of multipole moments to allow a most
flexible analysis. For the reason given above the r.m.s. radii are output in a file called
monopolesfile.

2.6.2. Alternative way to evaluate the total energy
The key observable is the total energy Etot. It is computed as given in Eqs. (5a-5h).

More detailed energy observables are provided by the s.p. energies (13c). These can
also be used to compute the total energy. The traditional HF scheme deals with pure
two-body interactions and exploits that to simplify [51]

Etot,HF =
1
2

∑
α

(tα + εα) (22)

where tα = 〈ψα|T̂ |ψα〉 is the s.p. kinetic energy. This is possible because

εα = tα + uα , uα =
∑
β

[vαβαβ − vαββα]− 1
2vα = εα − tα ,

where uα is the s.p. mean-field potential energy and v the two-body interaction, and

Etot,HF =
∑
α

tα +
1
2

∑
αβ

[vαβαβ − vαββα] .

The Skyrme force does not simply have this two-body structure. Still the total energy
is very often computed along the strategy of Eq. (22). However, the density dependence
requires augmenting this recipe by a rearrangement energy which accounts for a contri-
bution missing in the simple recipe (22). The extension to the Skyrme energy thus reads

24

Etot,HF =
1
2

∑
α

(tα + εα) + E3,corr + EC,corr , (23a)

E3,corr =
∫

d3r
α

6
ρα
[
b3ρ

2 − b′3(ρ2
p + ρ2

n)
]

, (23b)

EC,corr =
1
4

(
3
π

)1/3 ∫
d3r ρ4/3

pr . (23c)

In the code the total energy is computed both ways, from the straightforward Skyrme en-
ergy (5a) as well as from the above recipe (23), as described in Section 5.5.1. Numerically
these values are close but not identical.

2.7. Discretization
2.7.1. Data types

In the module Params a type db is defined for 12-digit accuracy and on all present
machines should amount to double precision, i. e., REAL(db) and COMPLEX(db) are actu-
ally REAL(8) and COMPLEX(8) for most compilers. Keeping the symbolic type throughout
of course makes the code more flexible for future hardware. Using single precision is not
recommended.

Since the external libraries are based on C or Fortran-77 coding, special care has
to be taken in this respect. The FFTW3 library stores its plans in 8-byte integers,
which in the modules Coulomb and Fourier are defined using the type C LONG from the
system-supplied module ISO C BINDING. If this is not available, they may be defined as
INTEGER(8) or if that also causes problems, DOUBLE PRECISION, which certainly corre-
sponds to at least 8 bytes. For the LAPACK routines, double-precision real and complex
variables are necessary, which we also define using “db’’. If db should ever be changed
in such a way that REAL(db) no longer corresponds to 8 bytes, different LAPACK routines
must be selected.

Note that data conversion needs some care. If a and b are double precision,
CMPLX(a,b) is not; according to the standard it returns the default accuracy, which on
many machines will still be single precision. Thus that for example in EXP(CMPLX(a,b))
the exponential would be evaluated in single precision. That is why in the code the
expression CMPLX(a,b,db) is used consistently; this is also safe for future changes in
accuracy.

The other conversion functions used are safe. AIMAG is generic and REAL reproduces
the accuracy of (only) a complex argument.

2.7.2. Grid definition
All wave functions and fields are defined on a three-dimensional regular Cartesian

grid of nx by ny by nz grid points. nx, ny, and nz must be even numbers. The
physical spacing between the points is given as dx, dy, and dz (in fm). In principle these
could be different for the three directions, but since this will lead to a loss of accuracy it is
highly recommended to give the same value to all of them. A typical range is 0.5–1.0 fm.

The grid is automatically arranged in such a way that in each direction the same
number of grid points are located on both sides of the origin. This means that the three-
dimensional origin is in the center of a cubic cell and has the advantage that exact parity

25

properties for the wave functions can be maintained. The coordinate values for e. g., the
x-direction are thus:

−nx− 1
2

dx, −nx− 1
2

dx + dx, . . . − dx

2
,

+
dx

2
, . . .

nx− 1
2

dx.
(24)

The corresponding values are available in the arrays x(nx), y(ny), and z(nz).

2.7.3. Derivatives
The computation of the kinetic densities and currents and the application of the

mean-field Hamiltonian require first and second derivatives at several places in the code.
We define them in Fourier space. For simplicity, the strategy is explained here for one
dimension. The generalization to 3D is obvious.

The nx discrete grid points xν in coordinate space are related to the same number of
grid points kn in Fourier space (physically equivalent to momentum space) as

xν =
(
−nx− 1

2
+ ν

)
dx , ν = 1, ..., nx , (25a)

kn = (n− 1)dk, n = 1, . . . nx/2 , (25b)
kn = (n− nx− 1) dk, n = nx/2 + 1, . . . , nx ,

dk =
2π

nx · dx
. (25c)

Note the particular indexing for the k-values. In principle, the values kn = (n− 1)dk for
all n are equivalent for the Fourier transform, but for the second half of this range the
negative k-values should be chosen because of their smaller magnitude. For the Fourier
expansion, k = −dk and k = (nx− 1)dk are equivalent because of periodicity in k-space.

A function f(xν) in coordinate space is connected to a function f̃(kn) in Fourier space
by

f̃(kn) =
nx∑
ν=1

exp (−iknxν)f(xν) , (25d)

f(xν) =
1
nx

nx∑
n=1

exp (iknxν)f̃(kn) (25e)

This complex Fourier representation implies that the function f is periodic with f(x+dx·
nx) = f(x). The appropriate integration scheme is the trapezoidal rule which complies
with the above summations adding up all terms with equal weight. The derivatives of
the exponential basis functions are

dm

dxm
exp (iknx) = (ikn)m exp (iknx) . (26)

Computation of the mth derivative thus becomes a trivial multiplication by (ikn)m in
Fourier space. Time critical derivatives are best evaluated in Fourier space using the fast
Fourier transformation (FFT). To that end a forward transform (25d) is performed, then

26

the values f̃(kn) are multiplied by (ikn)m as given in Eq. (26) and finally transformed
(ikn)mf̃(kn) back to coordinate space by the transformation (25e). This strategy is coded
in the subroutines cdervx, cdervy, and cdervz contained in module Levels. It is used
for derivatives of wave functions provided the switch TFFT is set.

For coding purposes, it is often useful to perform derivatives as a matrix operation
directly in coordinate space. The derivative matrices are built by evaluating the double
summation of forward and backward transform ahead of time. For the mth derivative
this reads

f (m)(xν) =
1
nx

∑
n

exp (iknxν)(ikn)m
∑
ν′

exp (−iknxν′)f(xν′)

=
∑
ν′

1
nx

∑
n

exp (iknxν)(ikn)m exp (−iknxν′)︸ ︷︷ ︸
D

(m)
νν′

f(xν′) .

From here, the detailed handling depends on the order of derivative. The kn run over
the values kn = 0,±dk,±2dk, ..., (nx/2− 1)dk,+dk nx/2. Here the index ordering given
in Eq. (25b) does not matter as the index is summed over. Note that the first and the
last value come alone while all others come in pairs of ± partners. These pairwise terms
can be combined into a sine function for n = 1 and a cosine for n = 2. The derivative
matrices thus read in detail

D
(1)
νν′ =− 2dk

nx

nx/2−1∑
n=1

n sin(kndx(ν−ν′))

− dk

nx

nx

2
sin((ν−ν′)dk nx/2) , (27a)

D
(2)
νν′ =− 2dk2

nx

nx/2−1∑
n=1

n2 cos(kndx(ν−ν′))

− dk2

nx

(nx
2

)2

cos((ν−ν′)dk nx/2) . (27b)

A word is in order about the first derivative. The upper point in the k-grid, dk nx/2, is
ambiguous. Exploiting periodicity, it could be equally well −dk nx/2. In order, to deal
with a ±k symmetric derivative we have anti-symmetrized this last point. The price for
this is a slight violation of hermiticity which, however, should be very small as we anyway
should not have significant wave-function contributions at the upper edge of the k-grid.

The derivative matrices D(m)
νν′ can be prepared ahead of time and are then at disposal

for any derivative in the course of the program. Actually, the matrices for the first
derivative are prepared in routine sder and for the second derivative in routine sder2,
both contained in module Grids. These routines are applied to generate the derivative
matrices derv1x, derv1y, derv1z, derv2x, derv2y, and derv2z, for first and second
derivatives in the x, y and z directions.

The matrix formulation of the derivatives is used in the code in two ways: on the one
hand, the derivatives of the real-valued densities, currents, and mean-field components are
always calculated using these derivative matrices, because they are real and the Fourier

27

transform method would require converting them to complex values (using special Fourier
techniques for real arrays is in principle possible but has not been worked out yet). In
addition the user can switch to using the matrix method everywhere, which may give a
slight speed advantage for small grid dimensions.

2.7.4. Boundary conditions
The code uses a periodic Fourier transform to calculate derivatives. This is valid only

with periodic boundary conditions. Thus in principle the wave functions and potentials
are assumed to be repeated periodically in each Cartesian direction. Because of the short
range of the nuclear force, this is not a serious problem in most cases; at higher energies,
however, as mentioned in Sect. 2.5.3 and 2.5.4 the emission of low-density material from
the nuclei can interfere with the dynamics in the neighboring box and cause problems
in the conservation of energy and angular momentum; for a detailed discussion see [65].
This is aggravated by the fact that even with periodic boundary conditions periodicity is
truly fulfilled only for the wave functions and mean-field components. Since the vector
~r itself is not periodic but jumps at the boundary, operators such as the orbital angular
momentum are not periodic.

Several ways to solve, or reduce, the problem have been brought up. The most obvious
and conceptually simplest approach is to increase the size of the numerical box. This
is, however, not an option in 3D calculations as the expense grows cubically with the
box length. Very recently, a multigrid method has been proposed [66] which renders the
use of enlarged boxes feasible (although still at the boundaries of present days computer
capabilities). Perfect removal of escaping particles is achieved by radiating or exact
boundary conditions [67–70] which, again, are not yet practicable in 3D calculations.
Robust and efficient are absorbing boundary layers using an especially tailored imaginary
potential [20] or by applying a mask function during time evolution [71]. The latter
technique is particularly easy to implement and has been widely used in the past. Its
robustness and efficiency allow developing advanced analyzing techniques on the grid as,
e.g., the computation of kinetic-energy spectra and angular distributions of the emitted
particles [72]. Those who are not afraid of a little bit of coding can easily implement
the mask-function technique for absorbing boundary conditions into the present code. A
detailed description and discussion of this approach and the proper choice of numerical
parameters is found in [63].

On the other hand, for the Coulomb field with its long range periodicity would be
clearly wrong. Therefore a computation of the Coulomb potential for the boundary
condition of an isolated charge distribution is implemented in addition to the periodic
one; see the manual for the module Coulomb. This is selected by the logical input variable
periodic and applies only to the Coulomb potential.

2.7.5. Wave function storage
Module Levels handles the single-particle wave functions and associated quantities.
The principal array for the wave function is called psi, which is of type COMPLEX(db).

Its dimension is (nx,ny,nz,2,nstloc), where the first three indices naturally refer to
the spatial position. The 4th index corresponds to spin: index 1 refers to spin up and 2
to spin down, quantization being along the z-direction.

The last index numbers the wave functions. If the code is run on a single node, the
value is nstmax, the total number of single-particle wave functions. They are divided

28

up into neutron and proton states, with the index range given by npmin and npsi. The
sub-ranges are:

• npmin(1). . .npsi(1) : the neutron states,

• npmin(2). . .npsi(2) : the proton states.

In the present code npmin(1)=1 and npsi(2)=nstmax.

Figure 1: Storage arrangement of the single-particle wave functions. On the left the case for single-
processor or OpenMP is shown, which for the case of distributed memory under MPI is mapped to the
individual processors as shown on the right. Note that each node will have its own values of nstloc and
globalindex.

If the code is run in parallel (MPI) on several nodes, only nstloc single-particle wave
functions are stored on a given node, where nstloc may vary. Pointers are then defined
to indicate the relationship between the local index and that in the global array of wave
functions. For details see the section on parallelization; the general layout is given in
Fig. 1.

29

There are a number of arrays containing the physical properties of the wave functions,
such as the single-particle energy. The names start with sp and they are defined in
module Levels. They are not split up in the parallel case, but on each node only the
pertinent index positions are used.

2.7.6. Densities and currents
The various densities necessary for constructing the mean field are actually kept

in separate arrays and can be output onto data files for later analysis (see subrou-
tine write densities). The dimensioning is (nx,ny,nz,2) with the last index refer-
ring to isospin for scalar densities, so that rho(:,:,:,1) is the neutron density and
rho(:,:,:,2) the proton density. For vector densities there is an additional index with
values 1 to 3 for the Cartesian direction, thus sdens(nx,ny,nz,3,2) containing the spin
density in each direction for neutrons and protons.

Since it is often not necessary to keep the neutron and proton contributions separate,
subroutine write densities has the option of adding them up before output.

2.8. Initialization
A particular strength of the code is its flexible initialization. There are essentially

three types of initialization, which can be selected through the input variable nof:

1. Harmonic oscillator: nof=0: this is applicable only to static calculations. The
initial wave functions are generated from harmonic oscillator states with initial
radii radinx, radiny, and radinz in the three directions. It is advisable to choose
the three radii different to avoid being kept in a symmetric configuration for non-
spherical nuclei. Note that this is a very simple initialization and has some defects;
for example, the initial deformation is controlled more by the occupation of the
oscillator states than by the radius parameters. This should eventually be replaced
by, e. g., Nilsson wave functions.
For this case the type of nucleus is determined by the input numbers nneut and
nprot giving the number of neutrons and protons, while npsi can be used to add
some unoccupied states (this sometimes leads to faster convergence).

2. Fragment initialization: nof>0: wave functions for a number nof of fragments
are read in and positioned in the grid at certain positions. The wave functions
are read from files produced by the static code with the file names given by the
input filename, they are positioned at center-of-mass positions fcent and given
an initial velocity controlled by fboost. The code determines the number of wave
functions needed from these data files and also checks the agreement of Skyrme
force and grid used. This initialization is used, e.g., for nuclear reactions (see
Section 2.5.4). For details see the input description in Section 5.9.
The number of fragments read in is arbitrary, but there are two special cases:

• for nof=1 a single fragment is read in. This can be useful for initializing
with static wave functions to study collective vibrations in a nucleus using the
TDHF mode.

• for nof=2 a special initialization can be done where the initial velocities are
not given directly but computed from a center-of-mass energy ecm and an
impact parameter b.

30

3. User initialization: a user-supplied routine user init can be employed to set up
the wave functions in any desired way. The only condition is that the index ranges
etc. are set up correctly and the wave function array psi is filled with the proper
values. It was found useful, e. g., to use initial Gaussians distributed in various
geometric patterns for α-cluster studies.

2.9. Restarting a calculation
Sometimes it is necessary to continue a calculation that was not run to the desired

completion because of a machine failure or because the number of iterations or time steps
was set too low. In such cases the last wave function file with name wffile, which is
generated at regular intervals of mrest iterations or time steps, can be used to initialize
a continuation. The program handles this in a simple fashion: if the logical variable
trestart is input as TRUE, it sets up an initialization with one fragment (read from the
initialization file) placed at the origin and with zero velocity. The only other modifications
to the regular setup are then to take the initial iteration number and time from that file
instead of starting at zero, as well as suppressing some unneeded initialization steps.

Restarting works for both static and dynamic calculations. To continue a calculation
that was stopped because the desired number of iterations or time steps was reached, a
new limit for these should be provided in the input.

This flexible restart makes it possible to use a different grid for the continuation in
the sense that the grid spacings must agree, but the new grid can be larger than the old
one.

2.10. Accuracy considerations
The grid representation and solution methods introduced above depend on several

numerical parameters. Their proper choice is crucial for the accuracy and speed of the
calculations. In this Section, we want to briefly address the dependence on numerical
parameters. An extensive discussion of grid representations and static iteration is found
in [56].

-118.72

-118.715

-118.71

-118.705

-118.7

-118.695

-118.69

1/4 3/8 1/2 3/4 1

b
in

d
in

g
 e

n
e
rg

y
 [

M
e
V

]

grid spacing ∆x [fm]

 2.6513

 2.6514

 2.6515

 2.6516

 2.6517

 2.6518

1/4 3/8 1/2 3/4 1

r.
m

.s
.
ra

d
iu

s
 [

fm
]

grid spacing ∆x [fm]

Figure 2: Binding energy (left) and r.m.s. radius (right) of 16O computed for the force SkI3 drawn as
functions of grid spacing ∆x = ∆y = ∆z. A logarithmic scale us used for ∆x. The number of grid
points has been chosen to keep the box size constant at Nx∆x = 24 fm.

Figure 2 shows the sensitivity with respect to the grid spacings ∆x, ∆y, ∆z. The
trend is the same for both observables, energy and radius: The results have very high

31

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800

q
u

a
d

ru
p

o
le

 m
o

m
e
n

t

time [fm/c]

∆x=1 fm
∆x=0.75 fm

Figure 3: Time evolution of the quadrupole momentum for two different grid spacings ∆x = ∆y = ∆z
and constant box size of 24 fm. The test case is 16O excited by an instantaneous boost computed with
the force SkI3.

quality and change very little up to ∆x = 0.75 fm. They quickly degrade above that
spacing. But even at ∆x = 1 fm, we still find an acceptable quality which suffices for most
applications, particularly for large scale explorations. If high accuracy matters, ∆x ≈
0.75 fm should be chosen; not much is gained by going to even finer gridding. This holds
for ground states and moderate excitations. High excitations and fast collisions may
require a finer mesh. Note that the maximum representable kinetic energy is Ekin,max =
(~2/2m)(π/∆x)2, which amounts to about 200 MeV for ∆x = 1 fm. The actual energies
of interest should stay far below this limit. It is an instructive exercise to study uniform
center-of-mass motion at various velocities to explore the limits of a given representation.

The number of grid points Nx = Ny = Nz in the tests of Figure 2 were chosen such
that the box size was the same in all cases. The actual choice of Nx depends sensitively
on the system, its size and separation energy. As a rule of thumb, the density decreases
asymptotically as ρ ∝ exp (−2

√
2mεNr/~) where εN is the single particle energy of the

least bound state. One should aim for at least ρ < 10−8 fm−3 at the boundaries.
Figure 3 explores the effect of grid spacing for dynamics. Two different spacings

are compared for a quadrupole oscillation following an instantaneous quadrupole boost.
Practically no difference can be seen for the “safe choice” ∆x = 0.75 fm and the robust
choice ∆x = 1 fm. Dynamical applications, oscillations and collisions, are in general
less demanding and can be performed very well with ∆x = 1 fm. This is pleasing as
dynamical calculations are usually much more costly than purely static ones.

There are two parameters regulating the static iteration according to Eq. (12), the
damping energy e0inv and the step size x0dmp. e0inv should correspond to the depth
of the binding potential. The overall step size x0dmp can be of order of one if e0inv is
well chosen. Nuclear binding is very similar all over the chart of nuclei. This allows to
develop one safe choice for nearly all cases. We recommend e0inv≈ 100 MeV together
with x0dmp≈ 1/2, reducing the latter slightly if convergence problems appear. Of course,
a few percent in iteration speed might be gained by fine-tuning these parameters for a
given case, but this is not worth the effort unless large scale surveys for a given class of
nuclei and forces are planned.

The time stepping using the exponential propagator has the two parameters, step

32

-116

-114

-112

-110

-108

-106

-104

-102

-100

 0 10 20 30 40 50

e
n

e
rg

y

[M
e

V
]

time [fm/c]

-99.48

-99.46

-99.44

-99.42

-99.4

 0 200 400 600 800 1000 1200

time

dt=0.3 fm/c

m=4
m=6
m=8

 m=10

-99.48

-99.46

-99.44

-99.42

-99.4

e
n

e
rg

y
 [

M
e

V
]

dt=0.1
dt=0.2
dt=0.3
dt=0.4

Figure 4: Time evolution of the binding energy of 16O after an excitation by a soft cos2 pulse of width
20 fm/c computed for the force SV-bas [40] with a grid spacing ∆x = 0.75 fm and box size of 24 fm.
Results are shown for different sizes of time step dt and different order of Taylor expansion m of the
exponential evolution. The left panel shows the full evolution from ground state energy to the excited
energy. The right panels concentrate on the times after the pulse is over in a narrower energy range
relevant for this excitation.

size dt and order mxp= m of the Taylor expansion (18) of the exponential. Intuitively,
one expects that small dt and large mxp improve the quality of the step. An efficient
stepping scheme, however, looks for the largest dt and smallest mxp which still provide
acceptable and stable results. It is hard to give general rules as good working values for
the parameters depend on all details of the actual calculation: gridding, nuclei involved,
excitation energy, and kind of excitation.

Figure 4 demonstrates the dependence of a typical dynamical evolution on these
time-stepping parameters. We consider a time interval up to 1260 fm/c which is a long
time for heavy-ion collisions and just sufficient for a spectral analysis of oscillations [60].
The excitation is done by a soft sin2 pulse of finite extension in time. The energy
increases during the initial excitation phase, as can be seen from the left panel in the
figure. After the external pulse is over, energy conservation holds, which is nicely seen
at plotting resolution in the left panel. Normalization should be conserved at all times.
Both conservation laws serve as tests for the time step. Norm is conserved up to at
least six digits for all cases and times shown in Figure 4. The energy is more critical.
The right panels show the energy in a small window around the final energy after the
excitation phase is over. The right lower panel shows a variation of the Taylor order m
for fixed time step. The most prominent effect is the sudden turn to catastrophic failure
for m = 6. In fact, propagation by approximate exponential evolution explodes sooner
or later in all cases. The art is to extend the stable interval by a proper choice of the
stepping parameters. It is plausible that the cases with m > 6 maintain stability longer

33

because the exponential is better approximated. It is surprising that m = 4 is also stable
over the whole time interval. There seem to be subtle cancellations of error going on.
Considering the stable signals, we see very little differences between the cases. One may
generally be happy with low m. It is mainly stability demands which could call for larger
m. Note that this is not a generic result. Stability for a given test case should be checked
once in a while and particularly before launching larger surveys.

The right upper panel in Figure 4 shows results for different dt (as we have seen, the
m values are not important as long as we achieve stable results). Here we see a clear
dependence on the step size. The energies remain constant in the average. But there
are energy fluctuations and these depend sensitively on dt. Smaller dt yields smaller
fluctuations. As far as one can read off from the figure, the amplitude of the fluctuations
shrink ∝dt2. It depends on the intended analysis to which level of precision the time
evolution should be driven. A value of dt≈ 0.4 fm/c will be acceptable in most cases
because the average trend remains far smaller than the fluctuations. Here also it must be
emphasized that this is not a generic number. Forces with lower effective mass (SV-bas
has m∗/m = 0.9) are more demanding and usually require smaller dt. On the other
hand, running propagation without the spin-orbit term allows even larger time steps
because the spin-orbit potential is the most critical piece in the mean-field Hamiltonian.
The mix of p and r imposes high demands on the numerical representations. We again
strongly recommend running a few tests when switching forces or excitation schemes.

3. Code structure

The code is completely modularized to provide as large a degree of encapsulation as
possible in order to ease modification. Most modules read their operating parameters
from an associated NAMELIST and have their local initialization routines. In addition, a
modern style of programming is used that employs a minimum number of local variables
and streamlined array calculations that make the code lines very close to the physical
equations being solved.

Here we give a brief overview over the modules and their purpose. The source files
containing the modules have the same names, but all in lower case, with an extension of
.f90. The higher-level modules are:

Main program: It calls initialization routines, sets up the initial wave functions using
either harmonic oscillator states or reading wave functions of static Hartree-Fock
solutions from given input files (module Fragments). It then calls either statichf
from module Static or dynamichf from module Dynamic to run the calculation.

Static: This contains the code for the static iterations statichf and the subroutine
sinfo to generate output of the results.

Dynamic: runs the dynamic calculation in dynamichf and generates output in tinfo.
Also controls the inclusion of an external excitation implemented in module
External.

Densities: calculates the densities and current densities by summing over the single-
particle states.

34

Meanfield: contains the central physics calculation: the computation of the components
of the mean field (subroutine skyrme) and the application of the single-particle
Hamiltonian to a wave function (subroutine hpsi).

Coulomb: calculation of the Coulomb potential.

Energies: calculation of the total energies and its various contributions.

External: calculation of the action of an external potential or initial collective boost of
the wave functions.

Pairs: Implementation of the pairing correlations in the BCS approximation.

Moment: calculation of moments and deformation parameters for the bulk density.

Twobody: attempts to divide up the system into two separated nuclei and to calculate
their properties and relative motion.

The lower-level supporting modules are:

Params: general parameters used throughout the code.

Forces: defines parameters of the Skyrme force and the pairing interaction and con-
structs them according to input.

Grids: defines everything associated with the numerical grid and sets it up.

Levels: definition of the single-particle wave functions and elementary operations on
them such as derivatives.

Fragments: controls the reading of static wave functions from precomputed data and
setting them up in the grid.

Inout: contains the subroutines for I/O of wave functions and densities.

Trivial: defines some very basic operations on wave functions and densities.

Fourier: sets up the transform plans for the FFTW3 package to calculate Fourier trans-
forms of wave functions and densities.

Parallel: This comes in two versions. The source file parallel.f90 contains the routines
to handle MPI message passing, while sequential.f90 sets up essentially dummy
replacements for sequential or OpenMP mode.

User: contains a sample user initialization code which can be used as a template for
more complicated setups.

35

4. Parallelization

For both OpenMP [73] and MPI [74] the code can be run in parallel mode. Par-
allelization for the static mode works in OpenMP but not in MPI: the reason is in
the orthogonalization step which is not easily amenable for distributed-memory parallel
computation. This should be worked on in the future.

MPI and OpenMP can be used jointly if there are computing nodes with multiple
processors.

In both cases parallelization is done over the wave functions. The code applies the
time-development operator or the gradient iteration, which use the fixed set of mean-field
components, to each wave function, and this can naturally be parallelized. Computing
the mean fields and densities by summing up over single-particle wave functions is also
easily parallelizable.

The library FFTW3 [75] itself can also run on multiple processors in parallel. This
can be used in addition to OpenMP or MPI, but was found to be helpful only in the
sequential version of the code.

4.1. OpenMP
The application of the subroutine tstep for propagating one wave function for one

time step, and of add densities for adding one wave function’s contribution to the
mean fields is done in parallel loops. The only complicating factor is that the densities,
being accumulated in several subsets, must be kept separate using the REDUCTION(+)
clause of OpenMP. The summation cannot be done internally in add densities, because
for the half time step the wave functions are immediately discarded after adding their
contribution to the densities to avoid having to store the full set at half time. Thus only
the combined tstep-add densities loop should be parallelized.

The OpenMP program version can be compiled using the appropriate compiler option.
A separate Makefile.openmp is provided which just contains the -fopenmp option for
the GNU compiler. The number of parallel threads is not set by the code: the user
should set the environment variable OMP NUM THREADS to the desired number.

The user should also check compatibility of the locally installed tt LAPACK/BLAS
libraries with OpenMP.

4.2. MPI
In principle MPI uses the same technique as OpenMP, parallelizing over wave func-

tions. In this case, however, each node contains only a fraction of the wave functions.
This has several consequences:

1. The time-stepping of the wave functions can be done independently on each
node, but requires that the densities are broadcast to all nodes after each half
or full time step by summing up partial densities from the nodes in subroutine
collect densities.

2. The other calculation that uses wave functions directly is that of the single-particle
properties. These are calculated on each node for the wave functions present on
that node and then collected using subroutine collect sp properties.

3. Only one node must be allowed to produce output. This is regulated by choosing
node #0 and setting the flag wflag to .TRUE. on that node.

36

4. The saving of the wave functions is done in the following way: Node zero writes a
header file containing the job information on file wffile, then each node writes a
separate file wwfile.001, wwfile.002, and so on up to the number of nodes. This
avoids having to collect the wave functions on one node.

5. Using these parallel output files as fragment initialization or restart files is handled
so flexibly that they can be read into a different nodal configuration or even a
sequential run.

The MPI version needs the appropriate compiler and linker calls for the system used.
The sequential or OpenMP versions are obtained simply by linking with sequential.f90
instead of parallel.f90, which replaces the MPI calls with a set of dummy routines
and sets up the descriptor arrays for the wave function allocation in a trivial way.

The Makefile.mpi shows the procedure; in practice systems differ considerably and
the user should look up the compilation commands for his particular system.

37

5. Program unit descriptions

5.1. Program Main3D

This is the main program that organizes the reading of the input and funnels the
calculation into the correct subroutines.

It consists of a number of simple steps. They are:

• Step 1: initialize MPI in case of an MPI parallel job. Start reading from standard
input beginning with namelist files for any changes in the file names.

• Step 2: read the definition of the force to be used and set it up (for its parameters
see Section 2.2.3).

• Step 3: read namelist main, which contains the overall controlling parameters.
The choice of imode is used to set up tstatic and tdynamic as logical variables.
In addition, if this is a restart, the number of fragments is set to one. The properties
of this one fragment are then filled in in subroutine getin fragments.

• Step 4: read the grid definition (see Section 2.7.2). With the dimensions known,
all grid-based arrays (but not the wave functions) can be allocated and the initial-
ization of the FFTW system can be done.

• Step 5: the appropriate namelist is read for the static or dynamic case, defining
some parameters in those modules.

• Step 6: determine wave function numbers. The way this is done depends on the
choice of nof. For positive nof, the fragment files are consulted to find out the
properties of each and add up the numbers. For nof=0 the numbers are taken from
namelist static, which was read before. If nof<0, they are also given in namelist
static, but the wave functions will be replaced by user-calculated ones.

• Step 7: now that the numbers are known, the wave function distribution over
nodes is computed or set to trivial for a sequential calculation, and the the arrays
related with wave functions are allocated.

• Step 8: the initial values of the wave functions are calculated. For nof>0 the wave
functions are read from the fragment files and inserted into the proper positions
(see Sections 2.5.4 and 5.9). For nof=0 the routine harmosc in module Static is
called to calculate harmonic-oscillator wave function, and for nof<0 the routine
init user does an arbitrary user initialization.

• Step 9: the mean-field arrays are zeroed and the Coulomb solver is initialized.

• Step 10: the calculation branches into either static or dynamic mode.

In the static calculation, init static just prints some information and sets up
damping (see Section 2.4.2) and statichf does the real calculation.

In the dynamic case, the subroutine dynamichf does all the work.

• Step 11: finally the MPI system is terminated.

38

5.2. Module Coulomb

5.2.1. Purpose
This module offers the subroutine poisson, which calculates the Coulomb potential

from the proton density. The two boundary conditions allowed are distinguished by the
value of the variable periodic. If it is true, the mesh is assumed to be periodic in all
three directions and the Poisson equation is solved using the 1/k2 Green’s function in
momentum space and assuming a homogeneous negative background annulling the total
charge (jellium approximation). Otherwise the boundary condition is for an isolated
charge distribution. In this case the potential is calculated by the method of doubling
the grid in all directions with zero density, folding with the 1/r-potential in momentum
space and then restricting to the physical region [76].

5.2.2. Details on the Coulomb solver for an isolated system
The Coulomb solver follows the ideas of [76]. We summarize here the way it is realized

in the code without detailed proofs.
Two grids are used. We will call them here G1 and G2. The grid G1 is our standard

working grid as given in eq. (25). We repeat here the essentials

G1 : νx = 1, ..., nx , νy = 1, ..., ny , νz = 1, ..., nz ;
coordinate spacing: dx, dy, dz;

momentum spacing: dkx =
2π

nx·dx
, dky =

2π
ny·dy

, dkz =
2π

nz·dz
;

The second grid amounts to a doubled box in each direction, thus

G2 : νx = 1, ..., 2nx , νy = 1, ..., 2ny , νz = 1, ..., 2nz ;
xνx = (νx−nx)dx , yνy = (νy−ny)dy , zνz = (νz−nz)dz ;

momentum spacing: dkx =
2π

2nx·dx
, dky =

2π
2ny·dy

, dkz =
2π

2nz·dz
;

The momenta kni in G2 are arranged around k = 0 similar as in G1, but with half spacing
dki. For simplicity, we will use compact notation rν =

(
xνx , yνy , zνz

)
and similarly for

kn.
First, the Coulomb solver has to be initialized by defining the appropriate Greens

function which is done on G2. The two necessary steps are:

1. Prepare the Greens function in r space as

G(rν) =
e2

|rν |
.

Special consideration has to be given to the singularity of the 1/r potential. In the
discretized version, the value at ~r = 0 should be replaced by the average of 1/r
over a cuboid of size ∆x×∆y ×∆z. For equal spacing in all three directions this
would lead to a value of 2.38/∆x. Practical experimentation, however, showed that
the underlying assumption of a point charge can be improved by some smeared-out

39

density for nuclear applications; a value of 2.84/∆x was found to be optimal. We
use the expression

G(0) =
2.84
√

3√
dx2 + dy2 + dz2

. (30)

2. Prepare the Greens function in k-space by 3D fast Fourier transformation (FFT) on
the double grid G2. G̃(kµ) = FFT{G(rν)}. The array G̃(kµ) is stored for further
continued use.

Once properly prepared, the practical steps for computing the Coulomb field UCoul(rν)
for a density ρ(rν) given on G1 are

1. Extend ρν from G1 to G2 by zero padding:

ρ2(rν) =

 ρ(rν) if 1 ≤ νi ≤ ni for i ∈ {x, y, z}
0 else

2. Fourier transform the density in G2:

ρ2(rν) −→ ρ̃2(kµ) = FFT{ρ2(rν)}

3. Compute solution in k-space by multiplication with the formerly prepared Greens
function

Ũ2(kµ) = G̃2(kµ)ρ̃2(kµ)

4. Compute solution in r-space by Fourier back transformation in G2:

U2(rν) = FFT−1{Ũ2(kµ)}

5. Map to standard grid G1:

UCoul(rν) = U2(rν) for ν ∈ G1

5.2.3. Module variables
nx2, ny2, nz2: (INTEGER,PRIVATE) dimensions of the grid on which the Fourier

transform is calculated. For the periodic case they are identical to the regular
dimensions, for the isolated case they are doubled.

coulplan1, coulplan2: (INTEGER,PRIVATE) plans for FFTW complex forward and
reverse transforms with array dimensions depending on the boundary condition.

wcoul: the Coulomb potential as a three-dimensional array. Units: MeV.

q: (COMPLEX,PRIVATE) array for the complex Green’s function (isolated) or array
of 1/r values. Its dimension also depends on the boundary condition.

40

5.2.4. Subroutine poisson

This subroutine solves the Poisson equation by the Fourier method. For the periodic
case, this means to just Fourier transform, multiply by 1/k2, and the transform back.
Note that the coefficient for momentum zero must be zero also: this means that the total
charge in the box vanishes, corresponding to the jellium approximation.

In the non-periodic case we use use the trick of doubling the box size in every direction
and then folding with 1/r my multiplying the Fourier transforms. The result in the
physical box is then the correct solution for the boundary condition of zero potential at
infinity. The key to success is not to use simply 1/k2 for the Fourier transform of 1/r,
but to compute it on the actual grid the same way as the densities and potentials are
transformed [76].

5.2.5. Subroutine coulinit

This subroutine does the necessary initialization. It calculates the dimension for the
Fourier transform depending on the boundary condition, allocates the necessary arrays
and sets up the FFTW plans.

Then it composes the array q. For the periodic case this contains the values of the
Green’s function 1/k2, with zero at the origin, while for the isolated case it first calculates
the inverse shortest distance 1/r from the origin with indices (1,1,1), replaces the value
at the origin according to Eq. (30) and then Fourier-transforms this to use it for folding
the density with the coordinate-space Green’s function.

5.2.6. Subroutine initiq

This subroutine calculates the contributions of each Cartesian index to r2 and k−2.
This depends on the boundary condition. For the periodic case, the values of the mo-
menta are given by

ki =
2π
n∆x

(
0, 1, 2, . . .

n

2
− 1, −n

2
, −n

2
+ 1, . . .− 1

)
.

For an isolated distribution the shortest distances to the point with index 1 are calculated
(periodicity used):

di = d
(
0, 1, 2, . . .

n

2
− 1, −n

2
,−n

2
+ 1, . . . 1

)
.

The input is the dimension along the coordinate direction given, the output is the one-
dimensional array iq containing these values squared.

41

5.3. Module Densities

This module has two purposes: it defines and allocates the densities and currents
making up the mean field according to Sect. 2.2.2, and also contains the subroutine
add density which accumulates the basic densities over the single-particle wave func-
tions. Subroutine skyrme in module Meanfield then uses these densities to build up the
components of the single-particle Hamiltonian.

5.3.1. Module variables
• Scalar densities: These are dimensioned (nx,ny,nz,2), where the last index is 1

for neutrons and 2 for protons.

rho: the density, separately for each isospin (in fm−3). The definition is:

ρq(~r) =
∑
k∈q

w2
k

∑
s

|φk(~r, s)|2, q = n, p

tau: the kinetic energy density, also separately for each isospin. It is defined as
the sum of the spin contributions and all particles of the given isospin

τq(~r) =
∑
k∈q

w2
k

∑
s

|∇φk(~r, s)|2, q = n, p

Note that it does not include the factor ~2/2m. Units: fm−5.

• Vector densities These are dimensioned (nx,ny,nz,3,2), where the last index
is 1 for neutrons and 2 for protons, and the next-to-last stands for the Cartesian
direction.

sdens: the spin density. It is defined as

~σq(~r) =
∑
α∈q

w2
α

∑
ss′

ψ∗α(~r, s)σss′ ψα(~r, s′).

Note that it does not include the factor ~/2. Units: fm−3.

current: this is the total probability current density, defined in the familiar way
as

~q(~r) =
1
2i

∑
α∈q

w2
α

∑
s

(ψ∗α(~r, s)∇ψα(~r, s)− ψα(~r, s)∇ψ∗α(~r, s)) .

Note that the factor ~
m is not included. Its units are therefore fm−4.

sodens: the spin-orbit density, defined as

~Jq(~r) =
1
i

∑
α∈q

w2
α

∑
ss′

(ψ∗α(~r, s)∇× σss′ψα(~r, s′)) .

Its units are also fm−4.

5.3.2. Subroutine alloc densities

This is simply a short routine to allocate all the arrays defined in this module.
42

5.3.3. Subroutine add density

This subroutine is given a single-particle wave function psin with its isospin index
iq and occupation w2

α =weight and adds its contribution to the density arrays.
The reason for not including the loop over states in the subroutine is that in the

dynamic code, the contribution of a new single-particle wave function (calculated by
tstep) to the densities is added without saving that wave function, eliminating the
requirement for a second huge wave-function array.

It may seem strange that add density has the densities themselves as parameters,
which are readily available in the module. The reason for this is OPENMP parallelization.
The loop over wave functions is done in parallel under OPENMP. Since any of the parallel
tasks must add up the contributions of its assigned wave functions, each task must have
a copy of the densities to work on; otherwise they would try to update the same density
at the same time. The separate copies are then combined using the OPENMP REDUCE(+)
directive.

The local copies of the densities passed as arrays are denoted with the prefixed letter
“l” for local; they are lrho, ltau, lcurrent, lsdens, and lsodens.

If the weight is zero, there is nothing to do and the subroutine returns immediately.
Otherwise, the contributions not involving derivatives are first computed and added to
the affected densities, i. e., number and spin density.

After this the derivative terms are evaluated by computing each Cartesian direction
separately. In all three cases the derivative is evaluated first and put into ps1, after
which the contributions are added straightforwardly. They involve the wave function
itself, the derivative, and for the spin-orbit density also a Pauli matrix, so that different
spin projections have to be combined properly.

The complex products always in the end evaluate to something real and the expres-
sions are simplified to take this into account. For example, the following transformation
is done:

1
2i

(ψ∗∇ψ − ψ∇ψ∗) =
1
2i

(ψ∗∇ψ − (ψ∗∇ψ)∗)

=
1
2i

(2i=(ψ∗∇ψ))

→ AIMAG(CONJG(psin) ∗ psi1)

and similarly for the other expressions.
The efficiency of this relies on the FORTRAN compiler recognizing that only the

imaginary part of the complex product is needed and not computing the real part at all.
This seems to be the case with all present compilers.

43

5.4. Module Dynamic

This module contains the routines needed for time propagation of the system (see
Section 2.5.2). All the logic needed for this case is concentrated here; all other modules
except for External are equally used in the static calculation.

5.4.1. Module variables
• nt: the number of the final time step to be calculated. In case of a restart this is

smaller than the total number of time steps.

• dt: the physical time increment in units of fm/c.

• mxpact: the number of terms to be taken in the expansion of the potential according
to Eq. (18).

• rsep: the final separation distance. The calculation is stopped if there has been a
reseparation into two fragments and their distance exceeds rsep.

• texternal: this logical variable indicates that an external field is present. See
module External.

• text timedep: this logical variable indicates that the external field is time-
dependent and does not describe an instantaneous boost.

• esf: this is the energy shift for the call to hpsi. Since it is not used in the dynamics
part of the code, it is here set to the constant value of zero.

5.4.2. Subroutine getin dynamic
This is a relatively simple routine that reads the input for namelist dynamic and

prints it on standard output. If texternal is true, it also calls getin external to read
the external field parameters.

5.4.3. Subroutine dynamichf

This subroutine performs the main time-integration algorithm starting at time step
0 and then iterating the desired number of steps. Its building blocks are:

• Step 1: preparation phase: this phase consists of several substeps.

1. If this is not a restart, the time and iteration number are zeroed (for a restart
only the physical time is taken from the wffile). The wave functions are
saved in the wffile, to save setup time in case the calculation has to be
restarted from this initial point.

2. The instantaneous external boost (10) is applied using extboost. If this
subroutine has applied a boost, it sets text timedep to .FALSE. so no further
calls to external-field routines are made (except for print extfield).

3. The protocol files *.res are initialized with their header lines.
4. The densities and current are calculated in a loop over wave function by calling

add densities. They are first set to zero and then accumulated in a loop over
the set on the local node, followed by collecting them over all nodes.

44

5. The mean field and (if texternal is true) the external field are calculated for
time zero using routines skyrme and extfld.

6. Then tinfo is called to calculate and print the single-particle quantities and
the total energies at time 0 or iteration 0.

7. Finally preparations are made for the time-stepping loop: the starting index
is set to iter+1: this is either after the end of a previous job in the case of a
restart, or just one for a new calculation. The physical time is either 0 or the
time taken from a restart file.

• Step 2: predictor time step: the loop over the iteration index iter is started.
Then the densities and mean-field components are estimated, i. e., in effect the
Hamiltonian ĥ(t+ 1

2∆t) required by the numerical method (see Eq. (16) and Sec-
tion 2.5.2). This is done by evolving the wave functions for a full dt using the old
Hamiltonian and averaging the densities between old and new ones to obtain the
mid-time Hamiltonian for propagation. In detail the procedure is as follows:

1. The densities are not set to zero in order to allow adding the contributions of
the wave functions at the end of the time step.

2. In the MPI version, the densities are divided by the number of nodes. In this
way, adding up contributions from all nodes, the densities from the beginning
of the time step will be included correctly.

3. Subroutine tstep is used to propagate the wave functions to the end of the
time step. Note that truncation in the exponential happens at mxpact/2, since
the accuracy need not be as high as in the full step. For each wave function
its contribution is added to the densities. The wave functions themselves do
not need to be saved as they are not used for anything else.

4. After the loop, contributions from all the nodes are added up for the MPI case
using subroutine collect densities.

5. The densities are multiplied by one half to form the average of the values at
t and t+ ∆t.

6. These average densities are then used to calculate the mean field at half time
using subroutine skyrme; also the external field is obtained for the half time
using extfld.

• Step 3: full time step: Now that the single-particle Hamiltonian has been
estimated for the middle of the time step, the propagation can be carried out
to the end of the time step. This is quite analogous to the half step with only three
crucial differences:

1. The densities are reset to zero before the wave function loop, so the densities
summed up are the purely the densities at the end of the time step,

2. the series expansion in tstep now uses the full mxpact terms, and
3. the new wave functions are copied back into psi to be available for the next

time step.

• Step 4: Center-of-mass correction If a center-of-mass correction is desired by
the user by setting mrescm/=0, subroutine resetcm is called every mrescm’th time
step to reset the center-of-mass velocity to zero.

45

• Step 5: generating some output At this point the time is advanced by
dt because the physical time is now the end of the time step, and this
must be printed out correctly by the following output routines. tinfo is
called to calculate single-particle properties, total energies, and so on.

• Step 6: finishing up the time step: tinfo is called to output the calculated
data, then skyrme and extfld calculate the mean field and the external field,
respectively, for the end of the time step, after which the wave functions are written
onto wffile depending on mrest.

This ends the time loop and subroutine dynamichf itself.

5.4.4. Subroutine tstep

In this subroutine one wave function given as the argument psout is stepped forward
in time by the interval dt. The method used is the expansion of the exponential time-
development operator according to Eq. (18), cut off at the power of mxp, which in practice
is usually around 6. Suppressing the argument of ĥ for brevity, we can write

Û(t, t+ ∆t)φ ≈
m∑
n=0

φ(n) (31)

with
φ(0) = φ, φ(k+1) =

−i ∆t
~ck

ĥ φ(k), k = 0, . . . ,m− 1. (32)

Thus the application of the polynomial to a single-particle wave function can be
evaluated simply in a loop applying ĥφk repeatedly and accumulating the results in wave
function psout.

The argument iq is only necessary because hpsi needs information about the isospin
of the wave function.

5.4.5. Subroutine tinfo

This subroutine is used to output various pieces of information relevant especially to
the dynamic mode of the code. It is called at the end of the full time step and consists
of the following steps:

• Step 1: initialization: the flag printnow is calculated to keep track of whether
this is the proper time step for a full printout (determined by mprint).

• Step 2: twobody analysis the twobody analysis is performed, but only if the
calculation started as a twobody scenario.

• Step 3: moments: the moments of the distribution are calculated using subrou-
tine moments. This includes total mass, momenta, and angular momenta. They
are printed out if indicated by printnow, both on the large output and in the
specialized files dipolesfile, momentafile, and spinfile. If there is an external
field, the routine print extfield is called to print the current expectation value
of the external field.

Note that the moments need to be calculated every time step, because
some of the logic may depend on them, especially the twobody-analysis,

46

which needs the correct c.m., for example and is calculated at every
time step and on every node.

• Step 4: single-particle quantities: the single-particle energies are calcu-
lated straightforwardly as expectation values of the Hamiltonian. The routine
sp properties is then called to obtain the other single-particle properties like an-
gular momenta. They are communicated between the processors. The angular
momenta are written to spinfile.

• Step 5: total energies: The integrated energy ehfint and its contributions are
calculated in integ energy. The subroutine sum energy is called to calculate the
three-body energy and the single-particle based total energy ehf. The collective
kinetic energy ecoll is computed directly here, because it is needed only in the
dynamic calculations and only for output. It is defined as

Ecoll =
~2

2m

∫
d3r

~ 2

ρ
(33)

The energies are protocolled in energiesfile and on standard output.

• Step 6: density output: at intervals of mprint or in the first time step the
density printer plot is generated using plot densities and the binary densities
are written onto *.tdd files using write densities.

• Step 7: other output: in the proper mprint interval the two-body analysis
results, the single-particle state information, and the moments are printed on stan-
dard output, using also the routines twobody print and moment print.

It is important to note that when tinfo is called before the time step iteration
starts, the two-body analysis cannot work because the fragment centers of mass
from the previous time step are either not known yet (restart) or identical to
the present ones (initialization). The subroutine twobody case is still called to
find the fragment properties, but the derived kinetic energy etc. will be incorrect.
Therefore the call to twobody print is suppressed in this case. The logical variable
initialcall is used to recognize this case.

• Step 8: check for final separation: for the twobody case it is checked whether
the separation found between the two fragments is larger than the input quantity
rsep with positive time derivative rdot of the separation distance, in which case
the program is terminated with an appropriate message.

5.4.6. Subroutine resetcm

This subroutine resets the center-of-mass velocity to zero. The velocity, or rather the
corresponding wave vector, is calculated from the current density using

ρ(~r)~k =
1
2i

∑
α∈q

w2
α

∑
s

(ψ∗α(~r, s)∇ψα(~r, s)− ψα(~r, s)∇ψ∗α(~r, s)) .

The wave functions are then multiplied by a common plane-wave phase factor exp(−i~k ·~r)
to give a counter boost.

47

5.5. Module Energies

This module computes the total energy and the various contributions to it in two
ways. The first method evaluates the density functional, Eq. (5a), by direct integration
to compute the integrated energy ehfint. The second method uses the sum of single-
particle energies plus the rearrangement energies, E3,corr for the density dependent part
and EC,corr for Coulomb exchange as explained in Section 2.6.2.

The two ways of calculating the energy are assigned to the subroutines integ energy,
which also calculates the rearrangement energies, and sum energy. Note that since
integ energy is always called briefly before sum energy, the rearrangement energies
are correctly available.

In addition subroutine sum energies also calculates the summed spin, orbital, and
total angular momenta.

5.5.1. Module variables
All the variables in this module are given in MeV unless otherwise noted.

• ehft denotes the total kinetic energy of Eq. (5b).

• ehf0 corresponds to the b0 and b′0-dependent terms of Eq. (5c).

• ehf1: the contribution depending on b1 and b′1 of Eq. (5d).

• ehf2 accounts for the b2, b′2-dependent contributions of Eq. (5e).

• ehf3 is the b3, b′3-dependent part of Eq. (5f) which models density dependence.

• ehfls is the spin-orbit energy (5g).

• ehfc is the Coulomb energy of Eq. (5h).

• ecorc is the rearrangement correction (23c) to Coulomb exchange in the Slater
approximation.

• e3corr is the rearrangement energy (23b) to the density-dependent part of the
Skyrme energy.

• orbital: the three components of the total orbital angular momentum in units of
~.

• spin: the three components of the total spin in units of ~.

• total angmom: the three components of the total angular momentum in units of ~.

5.5.2. Subroutine integ energy

The purpose of this subroutine is to calculate the integrated energy of Eq. (5a). This
is implemented pretty straightforwardly using the integrals defined in Section 2.2.3. The
only programming technique worth noting is that intermediate variables such as rhot
for the total density are used to avoid repeating the lengthy index lists. Compilers will
eliminate these by optimization.

In principle the integration loops in the subroutine could be combined, but some
space is saved by using the array worka for different purposes in different loops.

The calculation proceeds in the following steps:
48

• Step 1: the Laplacian of the densities is calculated in worka, then the integrals of
Eqs. (5c,5e, and 5f) are performed. After the loop the result for ehf3 is also used
to calculate e3corr of Eq. (23b).

• Step 2: the integral of Eq. (5d) is evaluated using worka for the ~q2 term.

• Step 3: the spin-orbit contribution of Eq. (5g) is calculated using worka as storage
for ∇ · ~Jq.

• Step 4: the Coulomb energy is evaluated from Eq. (5h) with the Slater correction
taken into account if the force’s ex is nonzero. At the same time the Coulomb
correction for the summed energy is calculated according to Eq. (23c) and stored
in ecorc. It will be used in the subroutine sum energy.

• Step 5: the kinetic energy is integrated for Eq. (5b). Note that only at this point
the correct prefactor ~2/2m is added; the use of tau in other expressions assumes
its absence.

• Step 6: Finally all terms are added to produce the total energy, Eq. (5a), from
which the pairing energies are subtracted.

5.5.3. Subroutine sum energy

This subroutine mainly computes the Koopman sum of Eq. (22), but also sums up a
number of other single-particle properties. For systematics, the latter should be done in
a different place, but at present is left here.

The summation of the total energy uses Eq. (13c) to compute∑
k

(εk − 1
2vk) = 1

2

∑
k

(2tk + vk) = 1
2

∑
k

(tk + εk).

The last sum is calculated, the rearrangement corrections are added and the pairing
energies subtracted.

The subroutine then sums up the single-particle energy fluctuation sp efluct1 and
sp efluct2, dividing them by the nucleon number. Finally the orbital and spin angular
momentum components are summed to form the total ones.

49

5.6. Module External

This module allows the coupling of the nucleonic wave functions to an external field.
As described in Sect. 2.3, this can be done either by adding a time-dependent external
(i. e., not self-consistent) potential to the single-particle Hamiltonian, or by giving an
initial “boost” to each wave function.. Since this is very easy to modify and will probably
have to be adjusted for most applications, the present version just contains a sample for
a quadrupole coupling. The logic for different time-dependence assumptions and the
isospin are however, fully functional and should be useful in many cases.

5.6.1. Module variables
Most of these just describe the behavior of the external field. They are all declared

as private, so that the user modifying this code can be sure that the internals are not
used anywhere else. The variables are:

• amplq0: a strength parameter for the perturbation. As explained in Sect- 2.3,
its numerical magnitude is usually not important by itself, but varying it allows
studying the effects of different strengths of the excitation.

• textfield periodic: if this is set to true, the external field is made periodic
according to Eq. (9c), otherwise a damping factor is used as defined in Eq. (9b).

• radext,widext: parameters r0 and ∆r for the cutoff of the field according to
Eq. (9b). Dimension: fm.

• isoext: isospin behavior of the external field: isoext=0 denotes the same action
on protons and neutrons, isoext=1 that with opposing signs.

• ipulse: type of pulse. ipulse=0 denotes the initial boost configuration, ipulse=1
a Gaussian pulse according to Eq. (9d), and ipulse=2 a cosine squared behavior
as defined in Eq. (9e).

• omega, tau0, and taut: these correspond to the parameters ω, τ0, and ∆τ in
Eqs. (9d) and (9e).

• extfield: this is the time-independent field generated according to the parameters
amplq0, textfield periodic, and depending on the latter, possibly radext and
widext. It is used either to calculate the initial boost or is added to the mean field
multiplied with the time-dependent factor.

5.6.2. Subroutine getin external

This is quite straightforward. It reads in all the parameters of the external field
and immediately does some consistency checks. The relative strength for the neutron
and proton fields is set equal for isoext=0 but reduced by the corresponding number of
particles in the isoext=1. This avoids a shift of the center of mass in this case.

Then the array extfield is allocated and the time-independent spatial potential
calculated for both isospin cases and in either the periodic or damped versions, depending
on the value of textfield periodic.This is just an illustrative sample field of type Qzz;
in a real calculation there is no need to provide both versions.

50

5.6.3. Subroutine extfld

This is again a very straightforward routine. It calculates the time-dependent pref-
actor time factor depending on the parameters, and adds the time-independent field
extfield multiplied by this factor to upot. The physical time is here given as an argu-
ment, because it needs to be evaluated at both full and half time steps.

5.6.4. Subroutine extboost

This performs the initial boost according to Eq. (10) on all single-particle wave func-
tions. Note that it is always called from dynamichf and checks itself whether ipulse is
zero. This enables ipulse to also be made a private variable. Its argument is used to
communicate whether it has actually done anything: if it has applied a boost, it sets its
argument to .FALSE. so that in dynamichf the variable text timedep makes it possible
to distinguish this case..

5.6.5. Subroutine print extfield

This subroutine calculates the expectation of the coupling energy to the external field,∑
q

∫
d3r ρq(~r)Fq(~r)

and prints one line containing the present time and this value onto the file extfieldfile.

51

5.7. Module Forces

Module Forces describes the interactions used in the code. The idea is to produce
a library of Skyrme forces that can be called up simply by name, but for exploratory
purposes a force can also be input using individual parameter values. A force is usually
fitted together with a prescription for the pairing and center-of-mass correction, so that
these properties are here defined as part of the force.

5.7.1. Module variables and types
To deal with forces and pairing as a unit, derived types are used:

• Pairing: This contains the following parameters for pairing:

v0prot : the strength of pairing for protons in MeV.

v0neut : the strength of pairing for neutrons in MeV.

rho0pr : the density parameter for the density-dependent delta pairing (see de-
scription for module Pairs).

• Force: the description of a Skyrme force. It contains the following values:

name : the name of the force used to identify it.

ex : some forces are fitted excluding the Coulomb exchange term. For ex=1 it is
included (this is the normal case), for ex=0 not.

zpe : index for the treatment of the center-of-mass correction (see end of Sec-
tion 2.2.3).

h2m value of ~2

2m , separately for neutrons and protons.

t0, t1, t2, t3, t4 : Skyrme parameters t0, t1, t2, t3, and t4. Defined in the usual
way.

x0, x1, x2, x3 Skyrme exchange parameters x0, x1, x2, and x3.

b4p spin-orbit modification parameter b′4 introduced in the “SkI” series of forces
(see Sect. xx).

power : exponent in the nonlinear (originally three-body) term.

vdi : parameter set for the volume-delta pairing case.

dddi : parameter set for the density-dependent delta pairing case.

The variables defined in the module are

• ipair: selects one of several pairing modes. For historical reasons the values are 0:
no pairing, 5: VDI pairing, and 6: DDDI pairing. In the input the symbolic names
are used so these numerical values are hidden to the user. For details see the input
description and module Pairs.

• f: this contains parameters for the Skyrme force actually used in the present cal-
culation, packed into the derived-type Force.

• p : the pairing parameters used in the present calculation. This is separate from
the force itself: the force definition usually contains suggestions for the associated
pairing, but this often overridden, e.g, by turning off pairing.

52

• h2ma: the average of the two h2m values for protons and neutrons.

• nucleon mass: the mass of the nucleon (average of neutron and Proton) in MeV
calculated from h2ma and hbc.

• The b coefficients: these are the coefficients actually used for the mean-field and
single-particle Hamiltonian calculations in skyrme and integ energy. Note that
only b4p is also included in the Skyrme-force definition; the others are derived from
the t coefficients.

The predefined Skyrme forces are contained in forces.data, which contains an array
pforce of TYPE(Force) data. This is a bit unreliable since the Fortran standard restricts
the length of statements; it should be replaced by reading from a data file in case this
limit causes problems. The present version is, however, still preferred as a data file would
have to be replicated in every application directory (or an absolute path would have to
be defined in the OPEN statement).

5.7.2. Subroutine read force

The purpose of the subroutine is to read the force and pairing definitions. The
NAMELIST force contains all the defining values for a Skyrme force (but now as individual
variables, not in a derived type) plus a selection of pairing type and strengths (see input
description). In addition there is a logical variable turnoff zpe which allows turning off
the center-of-mass correction.

Some quantities are first set negative to see whether required input is missing. Then
a predefined Skyrme force with the given name is sought; if it is found, it is simply copied
into f. If no force of this name is found, a new one is composed from the numbers given
in the input.

If the input varable turnoff zpe is true, the indicator f%zpe is set to 1, which implies
not doing anything about the center-of-mass correction. Actually, in the current version
this affects only one statement in the static module.

Now the “b” coefficients as given in Eq. (7) are calculated straightforwardly. There
is one additional coefficient slate used for the Slater approximation to the Coulomb
exchange term. This is not a free parameter, but precomputed for convenience in
forces.f90. The b and b′ coefficients are used in subroutine skyrme (module Meanfield)
and energy (module Energies).

The variable pairing from the namelist then determines the pairing. If it is set to
’NONE’, no pairing is included. Otherwise the strength parameters are taken from the
input or from the predefined force. If this process does not find a reasonable pairing
combination, stop with an error message.

Finally the routine calculates the values of nucleon mass and h2ma. It then prints
out a description of the force and pairing parameters.

53

5.8. Module Fourier

This module initializes the FFTW3 package for doing Fourier transforms [75]. It needs
the file fftw3.f from the FFTW3 package to define the symbolic parameters for the ini-
tialization calls.

Note that FFTW is used only for the complex transforms of the wave functions and
the Coulomb solver; the Fourier derivatives of the real fields are handled by explicit
matrix multiplication (see module Trivial, routines rmulx, rmuly, and rmulz). The
definition of the plans for the Coulomb solver is contained in subroutine coulinit in
module Coulomb.

5.8.1. Module variables
The module variables describe the various FFTW plans used in the code.

pforward, pbackward: plans for full three-dimensional forward and backward trans-
forms for both spin components.

xforward, xbackward: one-dimensional forward and backward transform in the x-
direction, but for all values of y, z, and spin s.

yforward, ybackward: one-dimensional forward and backward transform in the y-
direction, but for all values of x, z, and spin s.

zforward,zbackward: one-dimensional forward and backward transform in the z-
direction, but for all values of x, y, and spin s.

5.8.2. Subroutine initfft

In this subroutine the FFTW system is initialized and a 2-wave function array p is
allocated temporarily for performing the tests to make the plans efficient (we do not use
dynamic allocation, since having this array on the stack may produce different results
than on the heap — a point which has not been tested, though).

This is followed by the calls to set up the plans. These have different variations, since
the way in which the index or indices over which the transform is done are intertwined
with the unaffected indices is quite different for the different directions. Understanding
this Section requires a thorough familiarity with the FFTW documentation and Fortran
indexing.

An important point to consider when modifying the code: the setting-up of
a plan must agree with its later use with respect to whether the input and output arrays
are the same (in-place transform) or different. This is why p sometimes has a last index
of 2 in these calls: in the code all transforms are in-place except for xforward, yforward,
and zforward. It was found that very strange things happen if this rule is not obeyed.

54

5.9. Module Fragments

This module is concerned with setting up the initial condition from data files contain-
ing fragment wave functions, usually obtained in a previous static calculation. A typical
application is the initialization of a heavy-ion reaction, see Section 2.5.4. Beyond that,
any number of fragments (limited by the parameter variable mnof) can be put into the
grid at prescribed positions with given initial velocities. A condition is, however, that
the grid they are defined in is smaller than the new grid. If they are put close to the
boundary, they may have density appearing on the other side because of periodicity; this
may be acceptable if the boundary condition is periodic. A calculation may be restarted
on a larger grid, but this may be accompanied by some loss of accuracy, since the wave
function outside the original regions is set to a constant small value.

For the case of parallel MPI calculations, there is logic to read wave func-
tions distributed over a series of files as described in connection with subroutine
write wavefunctions. Since only the dynamic case can run under MPI at present, the
only application of this is to restart a dynamic calculation. The number of processors
may be different in the restart.

5.9.1. Module variables
fix boost (input) : if this is set to true, the boost (initial kinetic energy) values are

used unchanged from the input; otherwise they are calculated from the initial
kinetic energy of relative motion ecm and the impact parameter b. This implies a
two-body initial configuration. The initial motion is assumed to be in the (x, z)-
plane in this case. Note that for two initial fragments fix boost can also be set to
true for special initial conditions.

filename (input) : for each fragment this indicates the name of the file with the asso-
ciated wave functions. One file can be used several times in the case of identical
fragments, abut the code does not treat that as a special case.

fcent (input) for fragment no. i the initial three-dimensional position is determined
by fcent(:,i).

fboost (input) gives the initial motion fboost(:,i) of fragment i in 3 dimensions.
This is not a velocity, but the total kinetic energy of the fragment in that Cartesian
direction in MeV. The sign indicates the direction, positive or negative along the
corresponding axis. The sum of absolute values thus is the total kinetic energy of
the fragment. These values are used only if fix boost is true.

The following variables are used only if fix boost is false, i. e., for two-body initialization
from relative motion.

ecm, b (input) The kinetic energy of relative motion in MeV and the impact parameter
in fm.

vx, vz The components of the relative velocity in the (x, z)-plane

xli The angular momentum of relative motion in units of ~.

55

The following quantities have names of other variables prefixed by an “f” and are indexed
by fragment number; for the most part they duplicate variables describing the whole
system on a fragment-by-fragment basis.

fcmtot, fmass, fcharge Centers of mass, masses, and charges of the fragments.

fnneut, fnprot, fnstmax, fnpmin, fnpsi These have the same meaning as the variable
without “f”, but apply to the set of wave functions for one specific fragment.

fnumber gives the number of wave functions in the fragment for each isospin. For ini-
tialization of a dynamic calculation only wave functions with a nonzero occupation
are taken into account.

fnewnpmin, fnewnpsi are the starting and ending indices for each fragment’s wave func-
tions in the total set of wave functions combining all the fragments.

fnx, fny, fnz indicate the grid size on which the fragment wave functions are defined.

fnode and flocalindex are used for MPI. When the wave functions were written by
the parallel code, each node produced a file named “nnn.wffile”, which contains
the wave functions present on that node. For the wave function with index nst,
fnode(nst) indicates the number of the file and flocalindex(nst) the position
in the file. These are analogous to the variables node and localindex for the com-
plete calculation and are explained more thoroughly in the description of module
Parallel, see section 5.16.

5.9.2. Subroutine getin fragments

This subroutine reads the input variables, makes some consistency checks, and then
prepares for the initialization.

A restart is set up by placing one fragment taken from wffile at the origin with zero
velocity (see Sect. 2.9).

The main loop is over fragments. The fragment files are opened a first time to obtain
information about the fragments, which is stored in fragment-specific arrays. The checks
include agreement of the forces and grid spacings as well as that the fragment grid is not
larger than the new grid.

The code at this point makes a distinction between static and dynamic modes: for a
static calculation it is assumed that the data may be needed for a restart. In this case all
wave functions are read in even if not occupied even fractionally. For the dynamic case
only those with non-zero occupation are input as determined from fwocc. This yields a
reduced value for fnumber.

Note that at present it is assumed that the static wave functions are
ordered in ascending energy, so that the occupied ones will start at index
one and all empty states will be at the uppermost index positions.

Following this, the index positions in the new wave function array are calculated in
fnewnpmin and fnewnpsi by adding the numbers of wave functions of each fragment-
specific successively. Note that at this stage the proton indices are still counted from
one.

After this input loop, the indices npmin and npsi as well as the total number nstmax
for the combined system are calculated and finally the proton indices where the fragment

56

wave functions should be inserted are shifted to behind the neutrons, i. e., starting at
npmin(2).

At the end the two-body initialization twobody init is called for the dynamic case
with two fragments and fix boost=.FALSE.. This calculates the fboost values from
ecm and b.

5.9.3. Subroutine read fragments

This subroutine prints summary information about which fragment wave functions
occupy which range of indices. Then it does a loop over fragments to read in their
wave functions using read one fragment, followed by applying the boost to them using
boost fragment.

5.9.4. Subroutine read one fragment

This subroutine reopens a fragment file for the fragment indexed by iff and reads
the wave functions, inserting them at the correct index into the new wave function array
while also moving them to the desired center-of-mass position.

The principal loop is over isospin. The index limits in the fragment file for that isospin
are put into il and iu, and the new indices into newil and newiu. In the next step the
grid coordinates and the single-particle quantities are read. The latter are copied into
the new arrays and the isospin is also recorded. Then this information is printed.

Once this loop is concluded, the spatial shift is prepared. The shift is calculated from
the difference between the desired position fcent with respect to the origin of the new
coordinates given by x etc., and the fragment center-of-mass fcmtot with respect to the
origin in fragment coordinates fx etc. Subroutine phases is used to calculate essentially
the shift phase factor exp(−i~k · ∆~r), which is a product of phases in each coordinate
direction akx, aky, and akz. These have an index corresponding to ~k in the Fourier
transform.

Now the index arrays fnode and flocalindex are read, which indicate where the
wave functions are to be found in case of an MPI job. The logical variable multifile
records whether this is the case by testing whether any of the wave functions was stored
on other than node 0.

The following loop runs over the new index positions. If the wave function is not on
the current node, nothing is done except for ignoring the input record.

For the case of multiple files for one fragment (which is recognized by not all the
indices fnode being zero, a short subroutine locate is used to position input at the
correct location.

Otherwise the wave function is read from the fragment file using the fragment grid
dimensions into a variable ps1 defined with the full new dimension, then it is Fourier
transformed, multiplied by the phase factor, and transformed back. Finally it is inserted
into the total wave function array psi, where any zeroes are replaced by a small number,
presently set to 10−20.

5.9.5. Subroutine locate

This has the task to position the file for reading wave functions at the correct place. It
has as arguments the number of the file (corresponding to the node number in the previ-
ous calculation) and the index of the wave function in this file. The variable presentfile
keeps track of which file is currently open.

57

If we are starting to read a new file (which is always true initially, as no wave functions
are written into the header file wffile itself), it closes the present file, composes the file
name for the new one and opens it. Then the proper number of records are ignored to
position at the correct one. If the file has not changed, it simply returns and reading
continues sequentially. The logic of course assumes that files are stored sequentially in
each partial file, but the division into partial files need not be the same as in the previous
run.

5.9.6. Subroutine phases

This subroutine calculates the phase factors for a one-dimensional translation ∆x as

exp
(
−2πikj∆x

L

)
.

The shift was calculated in read one fragment, the argument c includes a denominator
L = nx ∗ dx, the total length of the grid. The momentum kj is determined in the usual
way for the finite Fourier transform.

5.9.7. Subroutine twobody init

The purpose of this subroutine is to calculate the boost values from ecm and b in the
two-body case. The calculation can be followed with an elementary understanding of the
two-body system kinematics, so we just give a brief overview.

The reduced mass xmu, the relative velocity vrel and the angular momentum xli
are calculated first. Then the components of the vector linking the two centers of mass
dix and diz are divided by the length of this vector roft to get the direction cosines.

The Coulomb energy is calculated assuming two point charges at distance roft and
is subtracted from ecm to yield the kinetic energy remaining at this distance, from which
the relative velocity vrel d is calculated. Since the total center of mass is assumed
to be at rest, the velocities of the fragments v1 and v2 can then be simply obtained.
The instantaneous impact parameter b d results from the angular momentum and the
relative velocity, and the angle by which the two fragments need to miss each other in
order to realize this impact parameter is computed in sint and cost.

This now makes it possible to calculate the boost velocity components, which are
converted into kinetic energies to conform to the definition of fboost as given in the
input. Note that these energies are signed to indicate the direction of motion.

Both velocities and energies are printed.

5.9.8. Subroutine boost fragment

This subroutine multiplies the configuration-space wave functions of fragment no. iff
by plane-wave factors to give them translational motion. This is done by calculating the
wave number vector akf from the kinetic energy. There is one subtle point: since the
boost is applied to single-particle wave functions, the momentum k should be the correct
one for one nucleon. Thus the total kinetic energy of the fragment is

T = A
~2

2m
k2,

where A is the mass number of the fragment and m the nucleon mass. Solving for k and
taking the sign into account yields the expression in the code.

The rest is then straightforward.
58

5.10. Module Grids

This module deals with the definition of the spatial grid and associated operations.

5.10.1. Module variables
nx, ny, nz: Number of points in each Cartesian direction. All must be even numbers to

preserve reflection symmetry.

dx, dy, dz: The spacing between grid points (in fm) in the three Cartesian directions.
Usually these should be identical.

periodic: logical variable indicating whether the situation is triply periodic in three-
dimensional space.

wxyz: the volume element wxyz=dx*dy*dz.

x, y, z: arrays containing the actual coordinate values in fm. They are dimensioned
as x(nx), y(ny), z(nz) and are allocated dynamically, thus allowing dynamic
dimensioning through input values of nx, ny, and nz.

der1x, der1y, der1z: matrices describing the first spatial derivatives in the x-, y-, and
z-direction, respectively. They are dynamically allocated with dimensions (nx,nx)
etc. and are calculated in subroutine sder.

der2x, der2y, der2z: matrices describing the second spatial derivatives in the x-, y-
, and z-direction, respectively. They are dynamically allocated with dimensions
(nx,nx) etc. and are calculated in subroutine sder2.

cdmpx, cdmpy, cdmpz: matrices describing the damping operation in the x-, y-, and
z-direction, respectively. They are dynamically allocated with dimensions (nx,nx)
etc. and are calculated using subroutine setup damping, which in turn calls setdmc.

5.10.2. Subroutine init grid

This subroutine is called during the initialization for both static and dynamic cal-
culations. It reads the grid dimension and spacing information using namelist Grid,
allocates the necessary arrays, and calculates the coordinate values and the derivative
and damping matrices.

This is done by calling the subroutine init coord once for each direction. It does
everything needed except the calculation of the volume element.

5.10.3. Subroutine init coord

In this subroutine the defining information for a grid direction (generically called v,
which can be replaced by x, y, or z) in the form of the number of points nv and the
spacing dv is used to generate the associated data. The arrays of coordinate values,
derivative and damping matrices are allocated. Since all the quantities that are later
used in the code are passed as arguments, this subroutine can handle all three directions
in a unified way. To print the information intelligibly, it is also passed the name of the
coordinate as name.

It is assumed that the coordinate zero is in the center of the grid, i. e., since the
dimension is even the number of points to each side of zero is equal andthe origin is in

59

the center of a cell. The special position of the origin is used in static calculations, e. g.,
for the parity determination. In other situations, the position of the center of mass is
more important, this is defined in module Moment.

If a difference location of the origin in the grid is desired, it can be done by changing
the statement generating the values of v.

Finally the derivative matrices and damping matrix are computed using sder, sder2,
and setdmc.

5.10.4. Subroutine sder

This subroutine calculates the matrix for the first derivative using equation 27a. It
receives the dimension nmax and the grid spacing d as arguments and returns the matrix
in der.

5.10.5. Subroutine sder2

This subroutine calculates the matrix for the second derivative using equation 27b. It
receives the dimension nmax and the grid spacing d as arguments and returns the matrix
in der.

5.10.6. Subroutine setup damping

This sets up the damping matrices by calls to setdmc for each coordinate direction.
The reason for not including this in init grid is that it used only in the static calculation
and requires the damping parameter e0dmp, which is in the static module. It has to be
passed as a parameter because circular dependence of modules would result otherwise.

5.10.7. Subroutine setdmc

This subroutine calculates the matrices corresponding to the one-dimensional opera-
tors

1
1 + t̂/E0

with t̂ = − ~2

2m
∂2

∂x2
.

Here E0 is the damping parameter called e0dmp in the code. Since the kinetic energy op-
erator t̂ contains the parameter ~2/2m, which is force-dependent, this subroutine depends
on module Forces.

The calculation proceeds simply by constructing the unit matrix, adding the operator
to it to form the denominator, and then calculating the inverse matrix using subroutine
gauss.

5.10.8. Subroutine gauss

This is a Fortran 95 implementation of the standard Gauss algorithm with pivoting. It
is simplified for the special case of computing B = B−1A with both matrices dimensioned
(n,n).

60

5.11. Module Inout

This module contains the procedures for binary input and output of the larger fields.
There are two variants, both of which are written at regular intervals: the wave func-
tion file wffile and the files containing the densities and currents. Since the former is
extremely space-consuming, each output normally overwrites the previous one. These
files are intended to be used for a restart, as initialization input (static solution for one
fragment) for another run, or for a final analysis of the wave functions.

The densities, on the other hand, are written on a series of file nnnnnn.tdd, where
nnnnnn is the number of the time step or iteration. This is useful for later graphical or
other types of analysis.

Note: where the variable name wffile is used inside file names in the following, it
should not be taken literally but is replaced by the character string it contains.

In addition the routine for printer plots, plot density, is included in this module, as
well as the subroutines sp properties and start protocol, which do not completely
match the purpose of this module but are placed here for convenience.

5.11.1. Subroutine write wavefunctions

This subroutine has two modes of operation depending on whether the code runs
on distributed-memory systems in MPI mode or on a shared-memory or single-processor
machine. In both cases it first determines the number of filled single-particle states
number(iq), which need not be the same as either the number of particles or the number
of states, since pairing may lead to partial occupation and in addition there can be empty
states.

Sequential operation: this case is recognized recognized by mpi nprocs==1. Open
wffile, then write four records containing general information.

Record 1: iter, nstmax, nneut, nprot, number, npsi, charge number, mass number,
cm.

Record 2: nx, ny, nz, dx, dy, dz, wxyz.

Record 3: x, y, z.

Record 4: wocc, sp energy, sp parity, sp norm, sp kinetic, sp efluct1.

These are followed by one record containing information for the MPI case, which
is included here only for compatibility: node, localindex. This is then followed
by a series of nstloc records (in the sequential case, nstloc equals nstmax), con-
taining the array of nx*ny*nz*2 wave function values for each single-particle state
(including spin).

MPI operation: in this case processor #0 writes the same general data as in the
sequential case onto file wffile, which is then closed. The purpose of record 5 in
this case is to record for each wave function (in global index space) which node it is
in and what the index on that node is. Since each node produces a separate output
file with only its wave functions, this allows reading any wave function correctly
from the set of files.

Each processor thus only writes the wave function data for its locally stored set of
nstloc wave functions onto files with the names composed (in variable rsfp) of

61

the number of the processor and wffile in the form nnn.wffile. For example,
if wffile has the value ’Ca40’, these files will be 000.Ca40, 001.Ca40, 002.Ca40,
etc. up to the number of processors.

5.11.2. Subroutine write densities

This subroutine produces a file iter.tdd with density and current data for the present
time step or iteration with number iter. In the file name iter is given in 6 decimal
digits. The record structure is as follows:

• Record 1: this contains the variables iter, time, nx, ny, and nz to define the
dimensions of the fields.

• Record 2: contains the variables dx, dy, dz, wxyz, x, y, and z to allow proper
labelling of axes in plots, etc.

• Further records: for each field to be written, a record is produced with the following
information:

1. Name of the field with up to 10 characters
2. Logical value scalar to indicate whether it is a scalar (.FALSE.) or a vector

field (.TRUE.).
3. Logical value write isospin to indicate whether the field is summed over pro-

tons and neutrons ((.FALSE. or not (.TRUE.). In the latter case the field has
a last index running from 1 to 2 for neutrons and protons, respectively. This
selection applies to all fields equally (except the Coulomb potential).

After this identification record, the corresponding field itself is written. The di-
mension varies in the following way:

scalar write isospin dimension

.FALSE. .FALSE (nx,ny,nz)

.FALSE. .TRUE. (nx,ny,nz,2)

.TRUE. .FALSE. (nx,ny,nz,3)

.TRUE. .TRUE. (nx,ny,nz,3,2)

The selection of fields to be output is handled through variable writeselect
consisting of nselect characters. Each field is selected by a one-character code, where
both lower and upper case are acceptable. At present the choices are:

• R: density rho (scalar). Name Rho.

• T: kinetic energy density tau (scalar). Name Tau

• U: local mean field upot. Name Upot.

• W: Coulomb potential wcoul (scalar). This has to be handled specially, since it
has no isospin index. Name Wcoul.

62

• C: current density current (vector). Name Current.

• S: spin density sdens (vector). Name Spindens.

• O: spin-orbit density sodens. Name s-o-Dens.

This system is set up to be easily modified for writing additional fields.

5.11.3. Subroutine write one density

This subroutines does the actual output for write densities in the case of a scalar
field. Its functioning should be clear from the description above.

5.11.4. Subroutine (Private)
This also does the actual output for subroutines write densities for the case of a

vector field. Its functioning should be clear from the description above.

5.11.5. Subroutine plot density

Produces a simple printer plot of the density distribution in the reaction plane. This
is not supposed to replace better plotting codes, but simply allows a quick glance at what
is happening in the code, even while it is running.

It is based on a very old routine found at ORNL and was translated into modern
Fortran. It uses helper function for interpolation.

5.11.6. Subroutine sp properties

In this routine the kinetic energy, orbital and spin angular momenta expectation
values, sp kinetic, sp orbital and sp spin of the single-particle states are calculated.
The latter are both three-dimensional vectors.

Note that the single-particle energy sp energy itself is not calculated here but in the
main static and dynamic routines, since it is obtained by applying the single-particle
Hamiltonian, which is done more conveniently there.

The procedure is quite simple: in a loop over wave functions the active one is copied
into pst for convenience. Then its three directional derivatives psx, psy, and psz and
Laplacian psw are calculated. In the big loop over the grid they are combined to the
desired matrix elements; the only technical point to remark is that since the result must
be real, efficiency can be achieved by formulating the complex products in an explicit
way. Then kin contains the kinetic energy (without the ~2/2m), cc the orbital and ss
then spin matrix elements.

Finally only the volume element, the factor of one half for the spin ad the prefactor
of the kinetic energy are added.

5.11.7. Subroutine start protocol

This is given a file name and a character string for a header line to start the file
contents. It is used for the *.res files. If the file already exists, nothing is done, since
this probably a restart job and output should just be added at the end of the file.

63

5.12. Module Levels

This module is concerned with the wave function data: definition of the pertinent
arrays, allocating their storage and simple operations on them.

5.12.1. Module variables
First there are some general variables describing the arrays:

nstmax: is the total number of wave functions present in the calculation. For the MPI
version only nstloc wave functions are present on each node. Note that for all
other wave-function related arrays, such as single-particle energies, the full set is
stored on each node.

nstloc: the number of wave functions stored on the present node. In principle this
should be defined in module Parallel, but this would lead to a circular module
dependence.

nneut, nprot; the physical numbers of neutrons and protons. These may be smaller
than the number of single-particle states.

npmin, npsi: the neutron states are numbered npmin(1) through npsi(1) and the
proton states run from npmin(2) through npsi(2). Protons follow neutrons, so
npmin(1)=1 and npmin(2)=npsi(1)+1. Note that for each particle type the number
of states can be larger than the particle number, as states may be fractionally oc-
cupied or even empty. If initialization is not from fragments, npsi(2) as an input
value refers to the total number of proton states, it is later updated (in init.f90)
to its normal meaning as the final index for proton states, which coincides with the
total number of states, npsi(2)=nstmax.

charge number, mass number: the physical charge and mass numbers.

We have to distinguish three different numbers: the number of physical particles nneut
or nprot, the number of single particle states read as npsi(1:2), and the number of
states actually having nonzero occupation, which can differ from the particle number if
pairing is used. Since the occupation given by wocc changes with iteration, this latter
number may be iteration dependent. It becomes important for the output of the wave
functions, as unfilled states need not be read from fragment data files in the dynamic
case. Therefore the numbers of states with nonzero occupation are computed only in
subroutine write wavefunctions, where they are called number(1:2)..

Next are the arrays for the wave functions themselves and the single-particle Hamil-
tonian matrix. Each wave function is complex dimensioned (nx,ny,nz,2) with the last
index denoting spin (1=up, 2=down for the z-direction).

psi: this is the main array for the wave functions. It has an additional last index
counting the states. In the sequential case it runs from 1 . . . nstmax, in the MPI
version each node has only nstloc wave functions.

hmatr: this is dimensioned (nstmax,nstmax) and is used for the single-particle Hamil-
tonian in the diagonalization step.

Finally arrays dimensioned nstmax to describe properties of each wave function.
64

sp energy: single-particle energy in MeV.

sp efluct1: single-particle energy fluctuation [MeV] calculated as√
〈ψ|ĥ2|ψ〉 − 〈ψ|ĥ|ψ〉2.

Used only as informational printout in the static part.

sp efluct2: single-particle energy fluctuation [MeV] calculated as√
〈ĥψ|ĥψ〉 − 〈ψ|ĥ|ψ〉2.

Used only as informational printout in the static part.

sp kinetic: single-particle kinetic energy in units of MeV.

sp norm: norm of single-particle wave function; should be unity normally.

sp parity: single-particle parity w.r.t. three-dimensional reflection at the origin; cal-
culated as ∑

s

∫
d3r ψ∗(~r, s)ψs(−~r, s).

wocc: occupation probability of single-particle state, may be fractional because of pair-
ing. In the equations this is usually denoted as w2

k, the square added because of
the pairing notation.

sp orbital: dimensioned (3,nstmax): expectation values of three components of
single-particle orbital angular momentum, in units of ~.

sp spin: dimensioned (3,nstmax): expectation values of three components of single-
particle spin, in units of ~.

isospin: keeps track of isospin of particle, 1=neutron, 2=proton.

5.12.2. Subroutine alloc levels

This subroutine allocates all the arrays associated with single-particle wave functions.
Note that while most have dimension nstmax, psi itself is dimensioned for the number
nstloc of wave functions on one specific processor. It also records the isospin value.

5.12.3. Subroutines cdervx, cdervy, cdervz
These three routines calculate derivatives of wave functions using the FFT method

explained in section 2.7.3, in the x-, y-, and z-direction, respectively. The first argument
is the wave function ψ to be differentiated, the second returns the first derivative ∂ψ

∂x ,
and the third one the second derivative ∂2ψ

∂x2 , where x can be replaced by y or z, of
course. The last argument can be omitted and no second derivative is calculated in this
case. The derivatives add the proper dimension of fm−1 and fm−2, respectively. Note
the dependence of the k-value on index as explained in Eq. 25b.

65

5.12.4. Subroutine laplace

depending on the presence of the third argument e0inv, it can calculate two things
using FFT methods:

• if e0inv is not present, it calculates the Laplacian

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
.

• if e0inv is present and positive, it calculates

1
E0inv + t̂

ψ,

with the kinetic-energy operator

t̂ = − ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
,

which is of course expressed through ~k in momentum space.

The methods used in this routine are similar to those for the derivatives cdervx
etc.

5.12.5. Subroutine schmid

This performs a Gram-Schmidt orthogonalization of the single particle levels in the
straightforward way: loop over states and subtract the components of all lower-indexed
states from a wave function. It can be parallelized under OpenMP, albeit not very ef-
ficiently, but becomes too slow under MPI, so that MPI is not enabled for the static
calculations.

66

5.13. Module Meanfield

5.13.1. Purpose
This module calculates all the ingredients needed for the energy functional and for

applying the single-particle Hamiltonian to a wave function.
The work is done by two subroutines: skyrme for the calculation of all the fields,

which can be scalar or vector and isospin-dependent. hpsi then is the routine applying
the single-particle Hamiltonian to one single-particle wave function.

Note the division of labor between skyrme and add density of module Densities:
everything that constructs fields — densities and current densities — from the single-
particle wave functions is done in add density, which is called in a loop over the states,
while skyrme does the further manipulations to complete the fields entering the single-
particle Hamiltonian by combining the densities and their derivatives. It does not need
access to the wave functions.

5.13.2. Module variables
All of the variables in this module are fields, either of scalar or vector character.

Their dimension is (nx,ny,nz,2) for the scalar and (nx,ny,nz,3,2) for the vector fields
with the last index indicating isospin in all cases. They are derived from the densities
calculated in module Densities.

upot: this is the local part of the mean field Uq as defined in Eq. (8b). It is a scalar
field with isospin index.

bmass: this is the effective mass Bq as defined in Eq. (8c). It is a scalar, isospin-
dependent field.

aq: This is the vector filed ~Aq as defined in Eq. (8e). It is a vector, isospin-dependent
field.

divaq: this is simply the divergence of aq, i. e., ∇· ~Aq. Its is a scalar, isospin-dependent
field.

spot: the field ~Sq as defined in Eq. (8f). It is a vector, isospin-dependent field.

wlspot: the field ~Wq as defined in Eq. (8d). It is a vector, isospin-dependent field.

5.13.3. Subroutine alloc fields

This subroutine has the simple task of allocating all the fields that are local to the
module Meanfield.

5.13.4. Subroutine skyrme

In this subroutine the various fields are calculated from the densities that were pre-
viously generated in module Densities. The method of calculation is pretty much a
direct application of the equations given in Section 2.2.5, but with a few modifications
for efficiency. The expressions divide up the contributions into an isospin-summed part
with b-coefficients followed by the isospin-dependent one with b′-coefficients. As it would
be a waste of space to store the summed densities and currents, the expressions are di-
vided up more conveniently. If we denote the isospin index q by iq and the index for

67

the opposite isospin q′ by ic (as iq can take the values 1 or 2, it can conveniently be
calculated as 3-iq), this can be written for example as

b1ρ− b′1ρq −→ b1(ρq + ρq′)− b′1ρq
−→(b1-b1p)*rho(:,:,:,iq)+b1*rho(:,:,:,ic)

This decomposition is used in all applicable cases.
For intermediate results the fields workden (scalar) and workvec (vector) are used.
Now the subroutine proceeds in the following steps:

• Step 1: all the parts in upot (see Eq. (8b) involving an α-dependent power of
the density are collected. Note that in order to avoid having to calculate different
powers, ρα is factored out. The division by the total density uses the small number
epsilon to avoid division by zero.

• Step 2: the divergence of ~J (sodens) is calculated for both isospins in workden
and the contributions are added to upot.

• Step 3: the Coulomb potential is calculated using subroutine poisson (see module
Coulomb). It and the Slater exchange correction (only if the ex parameter in the
force is nonzero) are added to upot for protons, iq=2.

• Step 4: the Laplacian is applied to the densities and the result stored in workden.
Then the remaining terms of Eq. (8b) are constructed. Note that the iq-loop is
combined with the following steps.

• Step 5: the effective mass is calculated according to Eq. (8c).

• Step 6: the gradient of the density is calculated and the spin-orbit vector ~Wq is
constructed in wlspot according to Eq. (8d).

• Step 7: the curl of the spin density vector is calculated and stored in workvec.

• Step 8: the vector ~Aq is calculated according to Eq. (8e) from the current density
and the curl of the spin density.

• Step 9: the curl of the current density is calculated and stored in spot.

• Step 10: now the two isospin contributions in spot are combined in the proper
way according to Eq. (8f). This way of handling it avoids the introduction of an
additional work vector for ∇× ~q.

• Step 11: the divergence of ~Aq is calculated and stored in divaq.

• Step 12: finally, the gradient of the effective mass term Bq (Eq. (8c) is calculated
and stored in the vector variable dbmass.

This concludes the calculation of all scalar and vector fields needed for the application
of the Skyrme force.

68

5.13.5. Subroutine hpsi

This subroutine applies the single-particle Hamiltonian to a single-particle wave func-
tion pinn to produce an output wave function pout. The argument iq indicates the
isospin for the wave function and eshift is an energy shift which is zero in the dynamic
calculation but crucial to the static algorithm (see grstep in module Static).

For an understanding of this module the role of the following local variables is crucial.
They are

• is: this is used in the loops over spin to indicate the spin component: is=1 for
spin up and is=2 for spin down.

• ic: denotes the index for the opposite spin; it is calculated as ic=3-is. Note the
similar handling of the two isospin projections using iq and icomp in subroutine
skyrme.

• sigis: this variable denotes the sign of the spin projection. It is calculated as
sigis=3-2*is and thus is +1 for spin up (is=1) and - for spin down (is=2).

The general structure of the subroutine is as follows: first the part of the Hamiltonian
not involving derivatives is applied, followed by the terms involving derivatives in order
x, y, z. Since the structure of the Hamiltonian involves only first or second derivatives
in one spatial direction in each term, the derivatives can be calculated for one direction
and then the working space can be reused for the next one.

The expressions for the different spatial derivatives are quite analogous, so that only
the x-direction will be discussed at length below.

When examining the expressions one by one, please refer to Eq. (8a), which for
convenience is repeated here:

ĥ = Uq(~r)−∇ · [Bq(~r)∇] + i ~Wq · (~σ ×∇) + ~Sq · ~σ −
i
2

[
(∇ · ~Aq) + 2 ~Aq · ∇

]
. (34)

• Step 1: the non-derivative parts not involving spin. These arise from Uq and
− i

2 ∇· ~Aq, which are combined into a complex expression. The energy shift eshift
is also included.

• Step 2: the spin current coupling is constructed by simply using the explicit
definition of the Pauli matrices and multiplying the resulting matrix onto the spinor
wave function.

• Step 3: the first and second derivative in the x-direction are evaluated and stored
in the arrays pswk and pswk2. The last term in the Hamiltonian gives rise to the
two contributions

−∂Bq
∂x

∂

∂x
−Bq

∂2

∂x2
,

of which the second is evaluated straightforwardly, while the first one is combined
with the spin-orbit contribution. The part of i ~Wq · (~σ × ∇) that contains an x-
derivative is

(iWyσz − iWzσy)
∂

∂x
=

iWy −Wz

Wz −iWy

 ∂

∂x

69

This is programmed employing the variable sigis to account for the different signs
in the rows of the matrix.

• Step 4: for the derivatives in the y-direction the procedure is similar; the spin-orbit
part is now

(iWzσx − iWxσz)
∂

∂y
=

−iWx iWz

iWz iWx

 ∂

∂y

• Step 5: for the derivatives in the z-direction the procedure is again similar; the
spin-orbit part is now

(iWxσy − iWyσx)
∂

∂z
=

 0 Wx − iWy

−Wx − iWy 0

 ∂

∂z

70

5.14. Module Moment

5.14.1. Purpose
In this module various moments of the density distribution are calculated. Most of

them come in two versions: an isospin-dependent one characterized by a final isospin
index of dimension 2, and a summed one distinguished by the ending “tot” in its name.
Thus, e. g., three variants of center of mass (21a) are stored : that of the neutrons
cm(1:3,1), of the protons cm(1:3,2), and of the total mass distribution cmtot(1:3).

Since the geometrical arrangement in space can be arbitrary with respect to the
Cartesian coordinate system — this is certainly true for non-central collision situations
— some quantities associated with the axes become meaningless in the general situation.
For this reason, the code also calculates the complete Cartesian quadrupole tensor (21b)
and diagonalizes it to obtain the principal axes of the nucleus. In this frame then we
compute the spherical quadrupole moments Q2m, see Eq. (21c), with their dimensionless
counterparts ao, a2 defined in Eq. (21d) and the deformation parameters β and γ from
Eq. (21e).

5.14.2. Module variables
pnr, pnrtot: the numbers of neutrons pnr(1)=N , protons pnr(2)=Z, and the total

particle number pnrtot=A. These are obtained by a simple integration of the
densities rho. Dimensionless.

cm, cmtot: the center of mass vectors of the neutron, proton, and total mass distribution,
~Rn, ~Rp, and ~R. Dimension: fm.

pcm: the integrated momentum vectors, not containing the nucleon mass. They thus
correspond to an integral over the current density only and have a dimension of
velocity: c.

rms(private), rmstot: these are the root mean-square radii (21f) of neutron, proton,
and total mass distribution. Dimension: fm.

x2m (private), x2mtot (private): the vectors of second moments of the radii in the three
coordinate directions, i. e.,

〈r2
i 〉 =

1
A

∫
d3r r2

i ρ(~r).

They are useful to get an idea of the shape of the nucleus in static calculations.
Dimension: fm2

q20 (private), q20tot (private): the m = 0 components of the spherical quadrupole
tensor Q20 in the principal-axes frame.

q22 (private), q22tot (private): the m = 2 components of the spherical quadrupole
tensor Q22 in the principal-axes frame.

beta20 (private), beta20tot (private): the quadrupole deformation parameters a0.

beta22 (private), beta22tot (private): the quadrupole deformation parameters a2.

71

beta, gamma: the Bohr-Mottelson deformation parameters β and γ. These are calcu-
lated only for the total mass distribution. beta is dimensionless whereas gamma is
expressed in degrees.

5.14.3. Subroutine moments

This is the principal subroutine for calculating the geometric quantities. It consists
of two loops, both over isospin and space, and a final analysis Section. In detail:

1. The first loop calculates the particle numbers, centers of mass, and, for the dynamic
case only, the momenta divided by nucleon mass.

2. The second loop is separate because the center-of mass must be known to use
it as the origin for the vectors. The r.m.s. radii rms and the quantities x2m are
calculated as well as the components qmat of the Cartesian quadrupole tensor
Qkl =

∫
d3r

(
3xkxl − r2δkl

)
ρ(~r), see Eq. (21b).

3. After this, the subroutine q2diag is used to determine the spherical components
Q20 and Q22 according to Eq. (21c) in the principal-axes frame (see Section 2.6.1),
also generating some printout in the process. These are then multiplied with a
scale factor to yield the dimensionless deformation parameters a0 and a2 according
to Eq. (21d) and finally by conversion to polar coordinates the Bohr-Mottelson
parameters β and γ with Eq. (21e).

4. The Cartesian and polar deformation parameters are then printed.

5.14.4. Subroutine moment shortprint

This subroutine simply prints some information into the specialized output files.
monopolesfile receives the r.m.s. radii and also the difference of neutron minus pro-
ton radius, while quadrupolesfile receives the spherical quadrupole components q20
and q20tot as well as the moments x2m. The physical time starts each line to enable
easy time-curve plotting.

5.14.5. Subroutine moment print

This subroutine prints a somewhat more detailed information. Particle number ,
r.m.s. radius, Q20, x2m, and center-of-mass are printed for the total distribution and also
separately for neutrons and protons. This output goes to the regular output unit.

5.14.6. Subroutine q2diag

This subroutine diagonalizes the Cartesian quadrupole tensor. To this purpose it
calls the LAPACK routine DSYEV.

The eigenvalues are obtained as q eig(i) in ascending order of magnitude, and the
corresponding eigenvectors as q vec(:,i). Both are printed. Then the correspond-
ing spherical moments are calculated assuming the z-axis is selected as that of largest
quadrupole moment:

Q20 =

√
5

16π
Qzz, Q22 =

√
5

96π
(Qyy −Qxx) .

They are returned in q20x and q22x.

72

5.15. Module Pairs

The principal part of this module is the subroutine pair, which computes the pairing
solution based on the BCS model. It is the only public part of this module. The other
subroutines are helper routines that directly use the single-particle properties defined
in module Levels. The module variable iq controls whether the solution is sought for
neutrons (iq=1 or protons iq=2 and accordingly the single-particle levels from npmin(iq)
to npsi(iq) are affected.

The principal procedure followed is to first calculate the pairing gap for each single-
particle state. This determines the occupation numbers wocc, which of course are used
throughout the program. Then the Fermi energy for the given isospin is determined such
that the correct particle number results.

Note that there is a factor of one half in many formulas compared to what
is usually found in textbooks. This is because here the sum over states

∑
k . . .

runs over all states, while in textbooks the sum is over pairs, giving half of
that result.

5.15.1. Module variables
eferm(2): Fermi energy in MeV for the two isospins.

epair(2): Pairing energy in MeV for the two isospins. It is given by

Epair =
1
2

∑
k

∆kukvk.

This is a public variable and the sum of the two values is subtracted from the total
energies in module Energies.

avdelt(2): Average gap in MeV for the two isospins. It is given by∑
k ∆kukvk∑
k ukvk

where the sum is over states with the given isospin.

avg(2): The average pairing force for each isospin, given by

Epair∑
k ukvk/2

.

deltaf(nstmax): single-particle gap in MeV for each single-particle state.

5.15.2. Subroutine pair

This is the only routine visible from outside the module. It solves the pairing problem
and prints out summary information. The principal results used in the rest of the code
are the BCS occupation numbers v2

k → wocc and the pairing energies epair.
The subroutine is structured straightforwardly: it first calculates the pairing gaps

deltaf by calling pairgap. Then for the two isospin values pairdn is called with the
correct particle number as argument. This does the real work of solving the equations.
Finally summary information is printed.

73

5.15.3. Subroutine pairgap

This subroutine calculates the pairing gaps ∆k stored in the array deltaf for all
single-particle states.

First a simplified version is returned if ipair=1 or for the initial itrsin (at present
set to 10) iterations of a static calculation. All gaps are set equal to 11.2 MeV/

√
A in

this case.
In the general case, there is a loop over the two isospin values iq. The pairing density

is obtained by evaluation of

work(~r) =
∑
k

ukvk |φk(~r)|2 (35)

where the simple conversion

ukvk = vk

√
1− v2

k =
√
v2
k(1− v2

k) =
√
wocc− wocc2 (36)

is used.
The isospin-dependent pairing strength v0act is obtained from the force definition.

The pairing field VP (~r) is then given by two different expressions: for VDI pairing
(ipair=5), the pairing density is simply multiplied by v0act, while for DDDI pairing
(ipair=6) it is

VP (~r) = v0act · work · (1− ρ(~r))/rho0pr (37)

involving the total density ρ and the parameter rho0pr from the pairing force definition.
In the final step the gaps are computed as the expectation values of the pairing field,

∆k =
∫

d3rVP (~r) |φk(~r)|2 . (38)

5.15.4. Subroutine pairdn

The subroutine pairdn determines the pairing solution by using rbrent to find the
correct Fermi energy for the given particle number. After that a few averaged or integral
quantities are calculated.

As the starting value for the Fermi energy the one for gap zero is used, i. e., the
average of the first unfilled and last filled single-particle energies. Then rbrent is called to
calculate the correct solution, after which there is a loop for a straightforward evaluation
of the module variables epair, avdelt, and avg.

5.15.5. Subroutine rbrent

This subroutine is an adapted version of the Van Wijngaarden-Dekker-Brent method
for finding the root of a function (see [58]). Given the desired particle number as an
argument, it searches for the value of the Fermi energy that makes this particle number
agree with that returned by bcs occupation. It is clear that this subroutine is in a very
antiquated style of Fortran; it will be replaced at some time in the future.

74

5.15.6. Subroutine bcs occupation

For a given Fermi energy εF passed as argument efermi, this subroutine evaluates
the particle number that would result with such a Fermi energy and returns it as its
second argument, bcs partnum. The isospin is controlled by module variable iq. First
the occupation probabilities are calculated using the standard BCS expression

v2
k =

1
2

(
1− εk − εF√

(εk − εF)2 + ∆2
k

)
. (39)

They are stored in wocc. A small correction is added, so that they are not exactly
identical to 1 or 0. The particle number is finally obtained as N =

∑
k v

2
k.

75

5.16. Module Parallel

This module organizes the execution on distributed-memory machines using MPI.
Its interface is made such that on sequential machines parallel.f90 can simply be
replaced by a special version sequential.f90 which contains a definition of this module
generating trivial data.

5.16.1. Parallelization concept
MPI parallelization is based on distributing the wave functions onto the different nodes.

Thus all operations acting directly on the wave functions can be done in parallel, not
only the time evolution by the application of the single-particle Hamiltonian, but also
the summing up of the densities and currents over those wave function stored on the
node. This means that only the final summation of the densities and the calculations
done with them have to be communicated across the nodes.

It is important that the single-particle properties also defined in Levels, e.g.
sp energy are not split up up for the nodes but the full set is present on each node.
The values are communicated by summing from all nodes with zeroes in those index
positions not present on a particular one. This method of handling them avoids having
to communicate many small arrays.

Since an efficient way of dealing with Gram-Schmidt orthogonalization in this case
was yet not found, at present the code can be run in MPI parallel mode only for the
dynamic case.

5.16.2. Module variables
tmpi: a logical variable set to true if MPI parallelization is activated. It is used to turn

the calling of all the MPI routines in the code on or off.

node, localindex: these are vectors of integers with dimension nstmax. For the single-
particle state with index i the wave function is stored on computing node node(i)
and its index on that node is localindex(i).

globalindex: tells the index of the single-particle state in the whole array of nstmax
states (it could be dimensioned nstloc but is dimensioned as nstmax to make its
allocation simpler). So for wave function index i on the local node, i=1..nstloc,
the single-particle energy must be obtained using sp energy(globalindex(i)).

mpi myproc, mpi nprocs, mpi ierror: these are variables associated with MPI and the
MPI documentation should be consulted.

5.16.3. Subroutine (Public)
This subroutine merely allocates the internal arrays of module Parallel.

5.16.4. Subroutine init all mpi

This subroutine initializes MPI and finds out the number of processors mpi nprocs as
well as the index of the current one mpi myproc. The flag wflag is set to true only for
the processor numbered 0.

76

5.16.5. Subroutine allocate nodes

The first loop in this subroutine distributes the wave functions over the nodes. This
is done by looping over the wave functions and assigning one to each processor in turn.
When the number of processors has been reached, it restarts from processor 0. This way
of allocation is to some extent arbitrary and can be changed.

The second loop then calculates which wave functions are present on the local node
and records their index gobalindex in the complete sequence. The third loop sets up
the reverse pointers localindex, which has to be done in a loop over all processors to
set up the information for the proper global indices.

5.16.6. Subroutine collect densities

This subroutine uses the MPI routine mpi allreduce to sum up the partial densities
from the different nodes, using temporary arrays tmp rho and tmp current (depending
on whether it is a scalar or vector field) in the process.

5.16.7. Subroutine collect sp properties

This subroutine collects the single-particle properties calculated from the wave func-
tions and thus available only for the local wave functions on each node. It uses a simple
trick: the arrays like sp energy are defined for the full set of indices but set to zero before
the calculation of these properties. On each node then the local values are calculated
but inserted at the proper index for the full set of wave functions. In this subroutine the
results from all the nodes are added up using mpi reduce, so that effectively for each
index one node contributes the correct value and the others zeroes. This process sounds
inefficient but considering the small size of the arrays that does not matter.

5.16.8. Subroutine finish mpi

This is just a wrapper for the MPI finalization call.

5.16.9. Using sequential.f90

In the sequential case module variables are added to simulate the MPI environment.
Thus variables with names starting mpi have to be supplied. The only ones whose value
is important are the processor number mpi myproc which is always zero in this case, and
the total number of processors mpi nprocs, which is 1.

All subroutines with names starting with mpi stop the code, because the calls to MPI
routines should only happen in parallel execution (they are conditioned by tmpi. Thus
it is an error if the code runs into one of these.

The indexing arrays become trivial: node(i)=0, localindex(i)=i, and
globalindex(i)=i for all i.

77

5.17. Module Params

This module contains some general parameters critical to controlling the code and
some mathematical and physical constants used everywhere.

5.17.1. Module variables
5.17.2. General parameters
db: this is a constant determining the precision of real numbers in the code in a portable

manner. In practice it will usually be REAL(8).

pi: the constant π.

hbc: the constant ~c in units of MeV*fm.

e2: the electron charge squared. It is calculated as α~c and has units of MeV*fm.

5.17.3. File names and units
These variables allow the user to change the names of some of the files used by the

code. Except for wffile, output is produced for an iteration or a time step at selected
intervals.

wffile: file to contain the static single-particle wave functions plus some additional
data. It is also used for restarting an interrupted calculation and is rewritten
regularly (see variables trestart and mrest). It can be turned off completely
using the name ’NONE’.

converfile: contains convergence information for the static calculation. Default:
conver.res.

monopolesfile: contains moment values of monopole type. Default: monopoles.res.

dipolesfile: contains moment values of dipole type. Default: dipoles.res.

quadrupolesfile: contains moment values of quadrupole type. Default:
quadrupoles.res.

momentafile: contains components of the total momentum. Default: momenta.res.

energiesfile: energy data for time-dependent

spinfile: time-dependent total, orbital, and spin angular-momentum data as three-
dimensional vectors. calculations. Default: energies.res.

extfieldfile: contains the time-dependence of the expectation value of the external
field. Present only if an external field for boost or time-dependent excitation is
used. Default: extfield.res.

scratch, scratch2: the unit numbers used for temporary storage. Default: 11 and 12.

78

5.17.4. Switches
These are logical variables to turn various features on or off.

tcoul: indicates whether the Coulomb field should be included or not.

tstatic, tdynamic: these are set true for a static or dynamic job, respectively. They
are not input directly but from the input variable imode, which is 1 for the static
and 2 for the dynamic case.

trestart: if true, restarts the calculation from the wffile.

tfft: if true, the derivatives of the wave functions, but not of the densities, are done
directly through FFT. Otherwise matrix multiplication is used, but with the matrix
also obtained from FFT. Default is true.

5.17.5. Output control
mprint: control for printer output. If mprint is greater than zero, more detailed output

is produced every mprint iterations or time steps on standard output.

mplot: if mplot is greater than zero, a printer plot is produced and the densities are
dumped onto *.tdd files every mplot time steps or iterations.

mrest: if greater than zero, a wffile is produced every mrest iterations or time steps.

5.17.6. Globally used variables
iter: number of the current time step or iteration. Used in both static and dynamic

modes.

time: the simulation time of the current step in fm/c; only meaningful in a dynamic
calculation.

wflag: indicates whether printing is allowed. This is necessary for the parallel job
to have only one processor print and concerns both the standard output and the
*.res files.

printnow: this variable is set to true if conditions for printing are met, such as a certain
interval in iteration number.

5.17.7. Field output control
nselect: parameter limiting how many fields can be selected for binary output, it is

just the length of the character string writeselect.

writeselect: it is used to determine which fields should be output under the control
of mplot.

write isospin: if this is .FALSE., the proton and neutron contributions of a field are
added up before output. Otherwise both are written.

79

5.17.8. Fragment number parameters
nof, mnof: number of fragments for the initialization and maximum allowed. These

should really be determined in module Fragments; the reason for putting these
here and reading nof early is that nof must be known and the arrays for fragments
allocated before reading the other fragment input. Setting mnof to a large number
is no problem since the arrays are quite small.

r0: nuclear radius parameter. The nuclear radius R = r0A
1/3 is used to compute the

β and γ deformation parameters in subroutine moments. Units: fm, default value
1.2 fm.

80

5.18. Module Static

5.18.1. Module variables
tdiag: if true, there is a diagonalization of the Hamiltonian during the later (after the

20th) static iterations. The 20 is hard coded in static.f90. Default is false.

tlarge: if true, during the diagonalization the new wave functions are temporarily
written on disk to avoid doubling the memory requirements. Default is false.

maxiter maximum number of iterations allowed.

serr convergence criterion. Iterations are stopped if the fluctuation in single-particle
energies falls below this value (see near the end of subroutines statichf).

e0dmp,x0dmp: these correspond to the parameters E0 and x0 appearing in the damped
gradient iteration of Eq. (12).

radinx, radiny, radinz: these are the radius parameters used in the harmonic-
oscillator initialization (see subroutine harmosc).

delesum: used to sum up the changes in single-particle energies during one iteration; it
is calculated in statichf but printed in sinfo so that it is a module variable.

5.18.2. Subroutine getin static

This routine reads the input for the static calculation using namelist static. This
includes the module variables of this module, but also the numbers of particles, which
are input quantities only in the static mode if initialization is not done via fragment files.
In the case of user initialization they are also needed to correctly allocate the fields; only
the wave functions are then calculated in user init. The values given in the input are
overwritten by fragment data otherwise.

Thus only if nof<=0 the input numbers are used. If npsi is not given in the input,
the values of nneut and nprot are used for the number of wave functions, except for the
pairing case, when they are computed from a formula.

The variables charge number and mass number are also set for this case.

5.18.3. Subroutine init static

This subroutine essentially just prints the static input and then initializes the header
files with their header lines. This is not included in getin static, because the particle
and state numbers may have been changed by fragment input.

In addition, the damping matrices are constructed by calling setup damping. Finally
for some Skyrme forces the effective mass is changed to account for the center-of-mass
correction. This should only be used if necessary and not in dynamic calculations.

5.18.4. Subroutine statichf

This is the principal routine for the static iterations. It applies the gradient step
repeatedly until convergence is achieved or the maximum number of iterations is reached.
The following local variables are worth defining:

sumflu keeps track of the fluctuations (13) in single-particle energies summed over the
states. It is used as the convergence criterion.

81

addnew, addco are simple factors with standard values 0.2 and 0.8 used for relaxation
(see Step 8). They are defined as parameter variables so they can be changed easily
if desired.

denerg is used as an argument to grstep to contain the relative change in energy of the
single-particle state.

• Step 1: Initialization: if this is a restart, the number of the initial iteration is
set to the value of iter+1 obtained from wffile. In this case the single-particle
quantities do not have to be set to zero and orthogonalization is not necessary.
If this is not a restart, the initialization is done as zeroth iteration and the first
iteration number for the loop is set to one. some variables are initialized to zero
and the matrix for the diagonalization hmatr is allocated. Then schmid is called
for initial orthogonalization.

• Step2: calculating densities and mean fields: the densities are reset to zero
and then in a loop over states the contributions of the single-particle states are
added up. The subroutine skyrme is called to compute the mean-field components.

• Step 3: initial gradient step: in a loop over the single-particle wave functions
the gradient step (see Section 2.4.2) is applied — see subroutine grstep. The sum
of relative changes in single-particle energies and fluctuations are accumulated in
delesum and sumflu. This loop is followed by the pairing calculation (which needs
the single-particle energies calculated in the gradient step) and renewed orthogo-
nalization. Then the detailed single-particle properties and energies are calculated
using sp properties and sinfo.

• Step 4: start iteration: this is the principal loop for the static calculation. The
iteration number is printed.

• Step 5: gradient step: this is identical to the initial gradient step in “Step 3”.

• Step 6: diagonalization: after 20 iterations and only if the switch tdiag is true,
diagstep is called to diagonalize the single-particle Hamiltonian.

• Step 7: pairing and orthogonalization: these are called for the new wave
functions.

• Step 8: calculate densities and fields with relaxation: the old density rho
and kinetic energy density tau are saved in upot and bmass, which are here used
purely as work arrays. Then the new densities are accumulated from the wave
functions and for rho and tau they are mixed with the old densities in a ratio
given by addnew and addco, if this is turned on by taddnew. skyrme is called to
calculate the new fields. Then the detailed single-particle properties and energies
are calculated and printed using sp properties and sinfo.

• Step 9: finalizing the loop: convergence is checked by comparing sumflu per
particle to serr, if it is smaller, the job terminates after writing the final wave
functions. Otherwise, the wave functions are written if indicated by mrest and the
loop continues.

82

5.18.5. Subroutine grstep

This subroutine applies the damped gradient step (12) to a wave function given
as argument psin. Its index is nst and isospin iq — these data are needed for the
construction of the Hamiltonian matrix hmatr. The argument spe → ε represents the
single-particle energy which is used a an energy shift in the calculation.

The work is done in the following steps:

• Step 1: apply ĥ− ε to the wave function psin to obtain ps1.

• Step 2: calculate the diagonal matrix element of ĥ

xnormb = 〈psin|ps1〉 = 〈psin|ĥ|psin〉

and the squared norm of psin (in xnorm). The expression xnormb/xnorm thus
corresponds to the expectation value ‖ĥ‖ in psin.

Then the matrix elements of ĥ with all other states of the same isospin are calculated
and inserted into hmatr; in the diagonal matrix elements the energy shift ε is added
back.

• Step 3: for the calculation of the fluctuation in the single-particle energy, the
quantity

exph2 = 〈psin|ĥ2|psin〉
is used to compute

sp efluct1 =
√
‖ĥ2‖ − ‖ĥ‖2

and the squared norm
varh2 = ‖ĥ psin‖2

similarly for the second fluctuation measure

sp efluct2 =
√
‖ĥ psin‖2/‖psin‖2 − ‖ĥ‖2.

They are calculated only for time steps with output turned on.

• Step 4: now the damping is performed. We first compute

|ps1〉 − xnormb |psin〉 =
(
ĥ− 〈psin|ĥ|psin〉

)
|psin〉

replacing ps1, on which then the real damping operator acts. If FFT is being used
for the derivatives, we use the routine laplace from module levels to compute

x0dmp

E0inv + t̂
|ps1〉.

If derivatives are to done by matrices, the damping matrices cdmpx etc. are used
(see subroutine setdmc in module Grids. The factors x0dmp and e0dmp have to be
manipulated a bit in this case. Finally we subtract this result multiplied by x0act
from the original wave function to get the damped one.

• Step 5: the single-particle energy is calculated from its new expectation value
with the energy shift restore, and the comparison with the initial value yields the
relative change denerg, which is passed back to the caller.

83

5.18.6. Subroutine diagstep

This subroutine performs a diagonalization of the single-particle Hamiltonian using
the LAPACK routine ZHBEVD. This is of course done separately for protons and neutrons
indexed by iq. The matrix hmatr is produced in grstep.

The details here depend on the requirements of this routine, which is written in
Fortran-77 and so has a complicated calling sequence with many arguments used for
intermediate storage.

We therefore do not give excessive detail here but summarize the main points, which
should be easy to analyze. The steps are:

• Step 1: the matrix is copied into lower-diagonal form into array hmatr lin. The
ZHBEVD is called, which leaves as main results the vector of eigenvalues eigen and
the unitary matrix unitary describing the transformation from the original states
to the diagonalized ones. The latter matrix is also stored in lower-diagonal form.

• Step 2: transform states: the matrix unitary is used to form the appropriate
linear combinations of the original single-particle states. If tlarge is true, each
state if formed independently and written onto a scratch file, otherwise an interme-
diate array ps1, dimensioned to hold either only protons or only neutrons (number
of states through the argument nlin), is allocated to receive the new states, which
are then copied back into psi.

5.18.7. Subroutine sinfo

This subroutine computes the data that are not needed for the calculation itself, but
only for informative output and writes them onto the appropriate output files.

First moments, integ energy, and sum energy are called to compute the relevant
physical quantities. Output lines are added to converfile, dipolesfile, momentafile,
and spinfile. Information on the current energy ehf, the total kinetic energy tke,
the relative change in energy over the last iteration delesum, the fluctuations in single-
particle energy, and the energy corrections are printed on standard output.

At intervals of mplot iterations the density printer plot is produced and the *.tdd
file containing the densities written.

Finally, on standard output more detailed output is given: an overview of the different
contributions to the energy, a list of single-particle state properties, and a listing of
various moments using moment print.

84

5.19. Module Trivial

This module contains some basic calculations with wave functions and densities, which
are similar enough to be grouped together.

5.19.1. Subroutines cmulx, cmuly, and cmulz

The routines do a complex matrix multiplication on a wave function along one of the
Cartesian directions, which we denote as [x,y,z] to indicate the possible choices. The
first argument [x,y,z]mat is the matrix dimensioned as a square matrix with the number
of points in the direction affected. The second argument pinn is the input wave function,
and the third one, pout, the output wave function. The result of the multiplication is
added to the output wave function if the final argument, ifadd, is nonzero. This allows
accumulating results but is not used in the present code. If ifadd is zero, the output wave
function is cleared to zeroes and thus is simply the result of the matrix multiplication.

The operation carried out here includes a loop over the spin index.
The effective calculation is, e. g., for the x-direction

pout(i, j, k, s) =
nx∑
i′=1

xmat(i, i′)pin(i′, j, k, s)

for all values of i,j,k,s.
Not that for the z-direction an explicit DO-loop is programmed instead of the FORALL

used in the other cases. This is because the compiler at some point did not optimize
well. This should be reexamined in the future.

5.19.2. Function rpsnorm

This function with one argument calculates the norm of a wave function, i. e.,

|ψ| =
∑
s=± 1

2

∫
|ψ(~r, s)|2 d3r → wxyz

2∑
s=1

nx∑
i=1

ny∑
j=1

nz∑
k=1

|psi(i, j, k, s)|2,

with wxyz the volume element.
This could be calculated with the built-in SCALAR PRODUCT function, but this was

found to be less efficient. Again, future compilers may change that.

5.19.3. Function overlap

This calculates the overlap of two wave functions psiL and psiR given as arguments
pl and pr. This is defined as

〈ψL|ψR〉 =
∑
s=± 1

2

∫
ψ∗L(~r)ψR(~r) d3r

→ wxyz
2∑
s=1

nx∑
i=1

ny∑
j=1

nz∑
k=1

CONJG(pl(i, j, k, s))pr(i, j, k, s).

This also might be replaced by SCALAR PRODUCT eventually.

85

5.19.4. Subroutines rmulx, rmuly, and rmulz

The subroutines work quite analogously to cmulx etc., with two important differences:

• The array finn operated on is not a complex wave function, but a real field in
space as is the result fout. Thus the arithmetic is real and there is no summation
over spin.

• The final argument ifadd has an additional function depending on its sign. If it is
zero, fout is set to zero before the calculation. If it is positive or zero, the result
is added to pout, otherwise it is subtracted.

This facility is used in the code to calculate the curl of vector fields, for example, by
applying the derivative matrices to the Cartesian components of the field and adding
and subtracting appropriately.

86

5.20. Module Twobody

This module contains the code to analyze the final (and also, though less useful) initial
stage of a heavy-ion reaction. It is applicable only to the dynamic calculations and only
if there are essentially two separated fragments. It calculates the fragment masses and
charges, their distance, the relative motion kinetic energy, angular momentum, and the
scattering angle.

The analysis assumes that the two fragments are separated by a region of noticeably
lower density, tries to find the line connecting their centers of mass and then divides
up space by a plane perpendicular to this line. Of necessity the results are not of high
precision, but tend to be useful nevertheless.

The user should be critical and always make sure that the real situation is a
two-fragment one before accepting the results of these routines. It is assumed
that the reaction plane is the (x, z) plane. The code could be generalized to
a three-dimensional situation, if necessary, but usually the assumption of a
fixed scattering plane should not be a problem. If the initial nuclei have
nonzero internal angular momentum, e. g., the reaction plane can rotate and
then a more general analysis cannot be avoided.

5.20.1. Module variables
roft: separation distance between fragments in fm.

rdot: relative-motion velocity in units of c.

xmin, zmin (private): coordinates of the point in the (x, z)-plane where minimum density
is found between the fragments.

slope, slold (private): Slope of the line connecting the fragment centers-of-mass.
slold is the value from the previous time step or iteration where the 2-body analysis
was last performed.

bb (private): intercept of the line. The line is thus given as z=bb+slope*x.

centerx, centerz (both private): coordinates of the two fragment centers of mass.

istwobody: logical, indicates whether this is a two-body case (TRUE) or not.

vacuum: parameter indicating the limiting density below which vacuum is assumed. This
value is not critical, since it is only used in looking for “empty” regions between
the nuclei.

The two-body properties finally calculated are the following:

xmu µ: the reduced mass in MeV.

vxx, vzz : x- and z-velocities of the fragments, calculated by differencing the center-of-
mass positions.

tke2body : total kinetic energy in MeV.

tketot : relative-motion kinetic energy in MeV.

87

roft : R: distance between the fragments in fm.

rdot : time-derivative of the separation distance, units of c.

teti : present scattering angle.

tdotc : ω: time derivative of scattering angle. Units c/fm.

xlf : angular momentum of relative motion in ~. It is calculated assuming two point
bodies via µR2ω.

xcoul : Coulomb energy, calculated from point charges.

xcent : centrifugal energy, based on angular momentum and distance.

ecmf : final relative motion energy after extrapolated to infinite separation.

5.20.2. Subroutine twobody case

This routine tries to find a separation of the system into two fragments and determine
their properties as well as those of the relative motion. It keeps track of previous analysis
results, since the 2-body properties are expected to change slowly and this makes the
analysis easier. Also, the motion of the fragments is determined by time-differencing.

The parameter xdt is the current time step. It cannot be imported directly from
module Dynamic since that would lead to a circular module dependence.

It uses the following steps:

• Step 1: the results of the last analysis are partially saved. This includes the
positions of the fragments, their distance, the slope of the connecting line, and its
angle.

• Step 2: the fragment division is sought in an iterative process with (at present)
a fixed iteration limit of 10. The reason for the iterations is that the connecting
line, which determines the dividing plane, which is orthogonal to it at the dividing
point, should link the centers-of-mass, but these can be calculated only assuming
a dividing plane. There is thus a self-consistency problem which as usual is solved
iteratively. During the iterations the new value of the center of mass is kept in
centerx and centerz, while the previous one is in centx and centz. Each iteration
has several steps:

1. The connecting line (slope and intercept bb) is determined in one of two ways:
if this is the first iteration, subroutine getslope is called to calculate the slope
from the quadrupole tensor; the intercept is then calculated assuming that
the line passes through the center-of-mass (which it should do in principle,
but it might be off in practice). For the later iterations the line is calculated
directly from the two centers of mass.

2. Next function divpoint is called to find out whether this is indeed a two-
body situation. It also returns the midpoint between the fragments in xmin
and zmin. This result is not used immediately, since it might be that shifting
the connecting line could change this situation.

3. The slope of the line is now rotated by 90◦ to get the line defining the dividing
plane in the (x, z)-plane. This has slopev and bb as slope and intercept.

88

4. Now in a simple loop integrals are done separately over the two regions, sum-
ming up charge, mass, and center of mass for the two fragments. The
assignment to the fragments is recognized by checking whether the point is
above or below the dividing line (variable diff). Note that the y-component
of the centers of mass is not calculated.

5. Finally the iteration process is stopped if no two-body situation is found or
the center-of-mass vectors have converged.

• Step 3: The two-body analysis is now assumed to be complete and the physical
quantities are evaluated. These are defined above in the list of module variables.
The following calculation concerns the final scattering angle tets extrapolated to
infinity. It can be understood using the Rutherford trajectories.

5.20.3. Subroutine getslope

This subroutine calculates the slope of the line determined by the eigenvector of
largest quadrupole moment in the (x, z)-plane. The first loop sums up the quadrupole
tensor, which is dimensioned q2(3,3) but of which the index 2 is not actually necessary,
since the y-direction is not involved. The definition is kept three-dimensional to reduce
confusion and make later generalization easier.

The two-dimensional eigenvalue problem for q2 has the secular equation (remember
q31 = q13:

(q11 − λ)(q33 − λ)− q2
13 = 0,

with λ the eigenvalue. For the larger eigenvalue we get

λ =
1
2

(
q11 + q33 +

√
(q11 − q33)2 − 4q2

13

)
,

and solving the equation q13x+ (q33 − λ)z = 0 for z yields

z =
q13

λ− q33
x

=
q13

1
2

(
q11 − q33 +

√
(q11 − q33)2 − 4q2

13

) .
The code calls the denominator denom and makes sure no division by zero happens (this
could happen for a spherical distribution). The resulting slope is returned in the module
variable slope.

5.20.4. Function divpoint

The function divpoint is a helper routine. It examines the line determined by slope
and intercept bb and finds the point (xmin,zmin) which is in the center of the void
between the two fragments, returning .true. if this is possible.

To this end it looks at the behavior of the densities along this line. Since the line has
no relation to the numerical grid, this is not trivial.

• First loop: Essentially it looks through the (x, z)-plane to find points closer than
half a grid spacing to the desired line with equation z=slope*x+bb (logical variable

89

online). If the slope is larger than one, i. e., if the nuclei are separating predom-
inantly in the x-direction, we need to take the equation x=(z-bb)/slope instead
to get better resolution. To make the result monotonic along the line, the do loop
in z runs backward for negative slopes. The points found are collected in index
vectors ixl, izl with accompanying densities rhol stored in arrays of length il.

• Second loop: now the number of fragments nf is counted by examining this one-
dimensional density curve, looking for disconnected density humps above vacuum
density. It is also recorded where the “vacuum” region starts and ends in variables
n1 and n2. The logic is as follows:

1. The logical variables in vacuum keeps track of whether the search is in a
vacuum region at the moment or not. It starts as TRUE.

2. Go to the next point. If its density is above vacuum, and we are in the vacuum,
a new fragment is starting and we increase the number of fragments nf by 1.
If it becomes bigger than 2, exit, because there are three or more fragments.
If it is now 2, record the starting index for the second fragment in n2.

3. If the density is below vacuum and we are not in vacuum, a fragment is being
ended. If it is the first fragment, we record this index in n1.

• Final processing At this point we expect a two-fragment situation if nf=2 and in
this case the void region between the fragments extends from n1 to n2, which are
indices into arrays ix1 and iz1 giving the position in the (x, z)-plane. The code
calculates the midpoint between the two positions and returns TRUE in this case.

90

5.21. Module User

This is included as a place to insert arbitrary user initialization of the wave func-
tions. It really does the same job as subroutine harmosc, which is a relatively com-
plicated example. For this reason a sample user initialization is also provided in the
file user sample.f90. It produces Gaussian wave functions for three alpha-particle-like
nuclei separated by a distance d and with radii r.

The only routine that has to be defined is user init , but for more complicated
initializations there can be any number of additional procedures accompanying it in
user.f90.

The setup assumes that the relevant particle numbers nneut and nprot and numbers
of states npmin, npsi, and nstmax are set correctly using the static input. In this case
we assume nprot=6, nneut=6, npmin=1,7, npsi=6,12, and nstmax=12. Note that the
occupation numbers wocc still have to be set explicitly, in this case they are all unity.

The routine then reads the parameters for the setup from namelist user. This
namelist can be used to read anything desired. If there is no user initialization, it is
simply omitted from the input file.

Now there is a loop over center positions with index ic. For each of them, the appro-
priate Gaussian is calculated and put into wave function #ic in the spin-up component;
the spin-down component is set to zero. Then the Gaussian is copied into index position
ic+3, spin-down component, and finally the complete wave functions are copied to the
proton indices by adding 6.

There is no need to orthonormalize the wave functions, since schmid is called before
the static iterations are started. User initialization for the dynamic case does not appear
useful; it could be easily done without modifying the code by running one static iteration
and using the wave-function file generated at the beginning to initialize the dynamic
calculation.

91

6. Input description

All the input is through NAMELIST and many variables have default values. The
NAMELISTs should be in this file in the order in which they are described here,
any NAMELIST not used for a particular job may be omitted or left in the input
file, in which case it is ignored. The input is from a file called for005, so the input
data have to be produced with an editor. If the large output listing is to go into output,
the code should be run using, e. g.,

./sky3d.seq > output

The reason for not using redirected input is that in most MPI implementations for an
input through “< for005” is passed only to node 0, while all nodes can read the same
file in parallel using an explicit OPEN statement.

6.1. Namelist files
This NAMELIST contains names for the files used in the code. They are defined in

module Params and are:

wffile: file to contain the static single-particle wave functions plus some additional
data. This can be used for fragment initialization or for restarting a job. Default:
’none’, i. e., nothing is written.

converfile: contains convergence information for the static calculation. Default:
conver.res.

monopolesfile: contains moment values of monopole type. Default: monopoles.res.

dipolesfile: contains moment values of dipole type. Default: dipoles.res.

quadrupolesfile: contains moment values of quadrupole type. Default:
quadrupoles.res.

momentafile: contains components of the total momentum. Default: momenta.res.

energiesfile: energy data for time-dependent calculations. Default: energies.res.

spinfile: time-dependent total, orbital, and spin angular-momentum data as three-
dimensional vectors.

extfieldfile: time dependence of expectation value of the external field.

6.2. Namelist force
This defines the Skyrme force to be used. In most cases it should just uses the input

values:

name : the name of the force, referring to the predefined forces in forces.data.

pairing : the type of pairing, at present either NONE for no pairing, VDI for the volume-
delta pairing, or DDDI for density-dependent delta pairing. The pairing parameters
are included in the force definition. Note that the pairing type must be
written in upper case.

92

turnoff zpe : if this is input as .TRUE., the zero-point energy correction is turned
off independent of the setting of zpe in the force definition. Its default value is
.FALSE..

There is also the possibility for inputting a user-defined force; this is described in detail
with module Forces, see Section 5.7.

6.3. Namelist main
This contains general variables applicable to both static and dynamic mode. They

are mostly defined in module Params.

tcoul: determines whether the Coulomb field should be included. Default is true.

trestart: if true, restarts the calculation from wffile. Default is false.

tfft: if true, the derivatives of the wave functions, but not of the densities, are done
directly through FFT. Otherwise matrix multiplication is used, but with the matrix
also obtained from FFT. Default is true.

mprint: control for printer output. If mprint is greater than zero, more detailed output
is produced every mprint iterations or time steps on standard output.

mplot: if mplot is greater than zero, a printer plot is produced and the densities are
dumped every mplot time steps or iterations. Default is 0.

mrest: if greater than zero, a wffile is produced every mrest iteration or time step.
Default is 0.

writeselect : selects the output of densities by giving a string of characters choosing
them (see subroutine write densities for details. Default is ’r’, i. e., only the
density is written.

write isospin : determines whether the densities should be output isospin-summed
(false) or separately for neutrons and protons (true). Default is false.

imode : selects a static imode=1 or dynamic imode=2 calculation.

nof : (number of fragments) selects the initialization. nof=0: initialization from har-
monic oscillator, only for the static case; nof<0: user-defined initialization by sub-
routine init user in module User; nof>0: initialization from fragment data as
determined in NAMELIST fragments.

r0: nuclear radius parameter. The nuclear radius R = r0A
1/3 is used to compute the

β and γ deformation parameters in subroutine moments. Units: fm, default value
1.2 fm.

93

6.4. Namelist grid
This defines the properties of the numerical grid.

nx, ny, nz : number of grid points in the three Cartesian directions. They must be even
numbers.

dx, dy, dz : spacing between grid points in fm. If only dx is given in the input, all three
grid spacings become equal. The grid positions are then set up to be symmetric
with the coordinate zero centrally between point number nx/2 and nx/2+1.

periodic : chooses a periodic (true) or isolated (false) system.

6.5. Namelist static
These input variables control the static calculations.

tdiag: if true, there is a diagonalization of the Hamiltonian during the later (after the
20th) static iterations. This 20 is hard coded in static.f90. Default is false.

tlarge: if true, during the diagonalization the new wave functions are temporarily
written on disk to avoid doubling the memory requirements. Default is false.

nneut, nprot: The numbers of neutrons and protons in the nucleus. These are used for
the harmonic-oscillator and user initialization.

npsi: the numbers of neutron (npsi(1)) and proton (npsi(2)) wave functions actually
used including unfilled orbitals. Again, useful only for harmonic-oscillator or user
initialization.

radinx, radiny, radinz: the radius parameters of the harmonic oscillator in the three
Cartesian directions, in fm.

e0dmp: the damping parameter. For its use see subroutine setdmc. The default value is
100 MeV.

x0dmp: parameters controlling the relaxation. The default value is 0.2. In special cases
it may be desirable to change this to accelerate convergence.

serr: this parameter is used for a convergence check. If the sum of fluctuations in the
single-particle energies, sumflu goes below this value, the calculation stops. A
typical value is 1.E-5, but for heavier systems and with pairing this may be too
demanding.

6.6. Namelist dynamic
These are variables controlling the dynamic (TDHF) calculation.

nt : number of time steps to be run.

dt : the time step in fm/c. A standard value is of the order of 0.2 to 0.3 fm/c, it
depends somewhat on the value of mxpact. If the combination of these two is
not good enough, the calculation becomes unstable after some time, in the sense
that the norm of the wave functions and the energy drift off and can diverge (see
Sect. 2.10).

94

mxpact : the order of expansion for the exponential time-development operator. The
predictor (trial) step calculation uses mxpact/2 as the order. For more information
see Sect. 2.10.

rsep : termination condition. If the final state in a two-body reaction is also of two-
body character, the calculation is terminated as soon as the separation distance
exceeds rsep. Units: fm. No default. The purpose of this variable is to prevent
the calulation of continuing into meaningless configurations, like crossing of the
boundary.

texternal : indicates that an external perturbing field is used. In this case the namelist
extern must be present. Default: false.

6.7. Namelist extern
The variables read here describe the external field that is applied to get the nucleus

into a collective vibration. Details can be found in the description of module External.
It is read only if the parameter texternal read in namelist dynamic is true.

ipulse : the type of pulse applied. For ipulse=0 the wave function is multiplied with
a phase factor that produces an initial excitation. For ipulse=1 a Gaussian time
dependence is used, for ipulse=2 a cos2 one. Default: 0. Details are given in
Eqs. (9d) and (9e).

isoext : isospin character of the excitation. If this is zero, protons and neutrons are
exited in the same way. For a value of 1, they behave oppositely but with a coupling
that leaves the center-of-mass invariant. Default: 0.

tau0, taut : time at which the excitation field reaches its maximum, and width of the
pulse. No defaults.

omega : if this is nonzero, the time-dependence of the external field gets an additional
cosine factor with frequency omega.

radext, widext : radius and width of a Woods-Saxon-type cutoff factor in radius for the
external field. Defaults: 100 fm and 1 fm, which practically implies no damping.
Definition in Eq. (9b).

amplq0 : amplitude for quadrupole excitation of the Q20 type. Defined as usual with
respect to the z-axis.

6.8. Namelist fragments
The variables in this namelist control fragment initialization for the case of nof>0.

Most quantities are dimensioned for the fragments and we indicate this by index “i” in
the following.

filename(i) : the name of the file containing the wave functions of fragment i.

fcent(1:3,i) : initial position of fragment i given as three Cartesian coordinate values
in fm. The position must be such that the complete fragment grid fits inside the
new computational grid.

95

fix boost : used only for the two-fragment case. if this logical variable is TRUE, the
initial velocities are calculated from the fboost values; otherwise from the relative
motion quantities ecm and b.

fboost(1:3,i) : the initial boost of the fragment in the three Cartesian directions. It is
given as the total kinetic energy in each direction in MeV, with the sign indicating
positive or negative direction. Thus SUM(ABS(fboost(:,i))) is the total kinetic
energy of fragment i.

ecm, b : center-of-mass kinetic energy in MeV and impact parameter in fm. Used only
if fix boost is FALSE. These are the values at infinite distance and are corrected
using Rutherford trajectories (assuming spherical nuclei) for initialization at the
finite distance given by the fcent coordinates.

6.9. Namelist user
This namelist is read only if needed for user initialization (see module User). Its

contents depend on the specific user initialization and the only thing to be said here is
that it should appear last in the input file. Since the namelist is defined and used only
in module User, its name can also be changed arbitrarily, of course.

7. Output description

7.1. Output and analysis
The code produces a number of output files containing various pieces of information.

The bulky observables, such as densities or currents, are selectively output at certain time
steps into special binary output files nnnnnn.tdd, where nnnnnn indicates the iteration
or time step number. These files can then be used for further analysis or converted to be
used as input in visualization codes. Examples of this are found among the utility codes
provided.

The complete set of wave functions is saved at regular intervals of mrest iterations or
time steps. Because this leads to large storage requirements, only the last such file in a
run is kept. It can be used for restarting the calculation or for inputting fragment wave
functions for initializing another calculation.

In MPI mode the wave functions are distributed over several files, each containing only
those present on a specific processor. An additional header file contains the remaining
information and can be used to read the wave functions even on a different processor
configuration.

Aside from these binary files there are a number of text files. The *.res files contain
one line for each time step or iteration where output is triggered according to the value
of mprint. There is an explanatory header line in these that has a leading ’#’, so that is
treated as a comment by gnuplot — thus gnuplot can be used immediately to plot the
behavior of any one column of numbers, i. e., the dependence of a physical quantity on
iteration or time. In addition more complicated output is printed on standard output,
which can be redirected into a file using shell redirection.

The names of the output files can be adjusted using input variables as listed in
Section 5.17.3, so that the files are here denoted by the default names given there. The
*.res files are relatively small, so that no mechanism was implemented to suppress them.

96

7.2. File conver.res

This is produced in sinfo only in the static calculation and its purpose is to give
a quick impression of the convergence behavior. The numbers given in each line are
the iteration count, the total energy in MeV, the relative change in energy from one
iteration to the next, the average uncertainties in the single-particle energies efluct1
and efluct2, the root-mean-square radius in fm and finally the deformation parameters
β and γ (see Section 2.6.1). The latter give an impression as to where the nuclear shape
is ending up.

For the judging of convergence, the efluct values are more important than the change
in total energy, since the energy can remain constant while the wave functions still change
considerably.

7.3. File monopoles.res

At present this file is generated in subroutine moment shortprint, but only in the
dynamic mode. It contains the time, the neutron, proton, and total root-mean-square
radii, and the difference of neutron minus proton root-mean-square radii.

7.4. File dipoles.res

This file is produced both in the static and dynamic calculations in subroutines sinfo
and tinfo. It contains the iteration or time step number followed by the three compo-
nents of the center of mass vector ~R and those of the difference of proton minus neutron
center-of-mass vectors ~R(T=1), both in fm, for the definition see Eq. (21a). The first of
these is useful as a check to see whether the center of mass drifts off during the calculation,
while the second vector may be useful to look at proton vs. neutron vibrations.

7.5. File quadrupoles.res

This is also generated in moment shortprint and thus only in dynamic mode. It
contains the Cartesian quadrupole moments (21b) for neutrons, protons, and the full
mass distribution followed by the expectation values of x2, y2, and z2 for neutrons and
protons, all in fm2.

7.6. File energies.res

This is the important monitoring file for the dynamic calculation. It is written in
subroutine tinfo and each line contains the simulation time, the number of neutrons
and protons in the system (these should be constant, so this is a stability check), the
total energy (again, this should be conserved), the total kinetic energy, and finally the
collective energy ecoll separately for neutrons and protons — see Eq. (33. Units for the
energies are all MeV.

7.7. Standard output
This contains all the additional information that in most cases is not needed directly

for further processing in, e. g., graphics programs. If it should be found necessary to
utilize some data from this file, it is in most cases easy to use grep or a scripting
language like Perl or Python to extract the necessary data. Of course the code can also
be modified to produce additional output files.

97

The initial part of the output essentially echoes all the data from the NAMELISTs in
tabular form, to enable checking the correctness of input data. In the case of fragment
initialization this is more involved and is discussed below for the dynamic case, since it
is not so common for static calculations.

In general the layout of the information is compact with sequences of “*” characters
to provide separation between input groups as some guidance for the eye.

7.7.1. Static calculation
The code first prints the current iteration number. Iteration “0” refers to the state

before iterations are started, for the later iteration numbers, the information refers to
the end of the iteration.

The overview of the various energy contributions is printed: the first part is similar
to what is in file conver.res, while a second list shows the energies calculated from the
density functional and split up for the various contributions.

Next there is a simple printer plot of the density distribution in the (x − z)-plane.
This is often quite helpful, since it shows what is going on in the calculation without the
need to start a graphics program, which requires converting the data first.

Next there is a listing of single-particle states. For each state this shows its parity,
occupation probability wocc (which is called v2, as it is interesting mostly in the pairing
case), the energy fluctuations sp efluct1 and sp efluct2, the norm, the kinetic and
total energies of the state, and finally the expectation values of the three components of
the orbital and spin angular momentum, respectively.

Finally a summary of some integrated quantities is given, separately for neutrons,
protons, and all nucleons: the particle number, the root-mean-square radius, quadrupole
moment, and the average of the coordinates squared, followed by the center-of-mass
components.

Then iterations continue and only one line is printed for each, as this may be quite
slow and it is important to be able to check progress while the code is running. After
mprint iterations the detailed information is repeated.

7.7.2. Dynamic calculation
After echoing the parameters for the dynamic calculation, the fragment definitions

are given and all the resulting information is printed: the computed boost values in case
of twobody initialization, the properties of the single-particle states read in, including
which index in the fragment file is transferred to which index in the total set of wave
functions.

In case of an external field, the input data is also echoed in a detailed form.
The time stepping starts and detailed output is produced every mprint steps at the

end of the time step. Much of it is similar to the static case, so only the differences are
pointed out.

Because in the dynamic case the situation can have a general three-dimensional char-
acter, the full information on the quadrupole tensor (21b) is printed, separately for the
neutron, proton, and total mass distributions. The three eigenvalues and associated nor-
malized eigenvectors are given, followed by Cartesian and polar deformation parameters
a0, a2, β, and γ, as defined in Section 2.6.1.

98

The separation of the two fragments and its time derivative is printed next and
repeated every time step, as examining these quantities is meaningful only with
more frequent sampling.

The energy information is shortened by omitting the quantities not of interest in the
dynamic case. After the printer plot the results of the two-body analysis are given (for the
meaning of the various quantities see Section 5.20). The Section on “collision kinematics”
shows the mass, charge, position, and kinetic energy of the two fragments. It should
be kept in mind that the two-body analysis is only valid if the reaction plane
is the (x − z)-plane and the results printed may not be useful if the physical
situation is not of two-body nature but the code does not recognize that.

The single-particle property list and the integrated quantities are as in the static case,
but the energy fluctuations are omitted.

The next time step is then indicated and the fragment separation data are printed
for every time step until after mprint steps the full output recurs.

8. Utilities

A set of short programs is designed to help with further processing of output from
the code. The currently available set is described here.

Most of these routines contain a loop to input a file name from the terminal. If it is
desired to do this in a loop over a set of files, a simple trick can be used: generate a list
of file names using, e. g.,

ls -1 *.tdd > list
and then execute the program with “list” as input, e. g.,
./fileinfo < list
For Tdhf2Silo a script convert is provided that handles this (see below). It can

easily be adapted to the other utilities and must be stored in the same directory as the
executable utility program itself in order for the dirname command to work properly.

8.1. Fileinfo
This is a short program to print information about binary files generated by Sky3D. It

takes the name of either a *.tdd or a wave function file as input and prints out essentially
all the information contained in the header. It can be compiled simply by executing

gfortran -o fileinfo fileinfo.f90

8.2. Inertia
This program calculates the tensor of inertia relative to the center of mass from the

density distribution. It is intended as an example of an analysis code reading *.tdd files
and doing some computation, which can be used as a model for doing similar things. It
illustrates looking for the desired field in the file and taking into account whether it is
stored as a total density or isospin-separated. Being given a filename as input, it reads
the density and calculates the inertia tensor to print all its 9 components. Compile it
using

gfortran -o Inertia Inertia.f90

99

8.3. Cuts
This utility reads the density from a file nnnnnn.tdd file and produces output files

named nnnnnnrxy.tdd, nnnnnnrxz.tdd, and nnnnnnryz.tdd, which contains two-
dimensional cuts through the system in the (x, y), (x, z), and (y, z) plane, respectively.
The cuts are evaluated at the origin for the third coordinate by averaging the two neigh-
boring planes.

These data files are written in such a format that they can be read by gnuplot for
use in its commands for 2-dimensional plotting.

This program is intended again as a template that can be modified for other appli-
cations.

8.4. Overlap
This is a code to calculate the overlap of two Slater determinants. Given the names

of two wave function files (which must contain compatible data: dimensions, force, etc.)
it reads the wave functions, generates the matrices of overlaps between one set and the
other separately for neutrons and protons, and then calculates the determinant of each,
which is the overlap between the two Slater determinants. It prints some summary
information: distance between the centers of mass of each set, minimum and maximum
diagonal elements, maximum absolute value of off-diagonal elements, and finally the
overlaps for protons and neutrons as well as their product.

This code uses subroutines from LINPACK (stored at NETLIB.ORG), which are included
in the file det.f with appropriate copyright. It can be compiled using

gfortran -o overlap overlap.f90 det.f.

8.5. Tdhf2Silo
This program is quite complicated. It reads a set of *.tdd files and converts them into

Silo files. Silo is a library for handling scientific datasets developed at Lawrence Liver-
more National Laboratory (https://wci.llnl.gov/codes/silo/index.html). This is
the most appropriate library to use in conjunction with the LLNL graphics visualization
tool VisIt (https://wci.llnl.gov/codes/visit/home.html), which was found to be
highly suitable for plotting Sky3D results and producing movies. It should be noted that
a copy of the included file silo.inc is provided, which defines symbolic names for the
various parameters used in the library calls. This file is from Silo version 4.9. Older
versions of this file may cause problems as they use fixed-format Fortran
style; the present version of silo.inc should, however, also work with older
versions of the library.

The conversion code is quite flexible in that it decides what to produce for the different
field types: isospin-summed or not, vector or scalar. They are given appropriate names
for Silo with suffixes p and n for protons and neutrons, and x, y, z for the vector
components. In the case of vector fields a variable containing the vector definition is also
written so that the field can be plotted immediately as a vector field in VisIt.

If the user wants another dataset handling method, the code should be readily adapt-
able to other libraries. VisIt itself has many ways of importing data, but of course there
are also alternative 3D visualization systems.

100

9. Running the code

9.1. Compilation and linking
To produce executable files the code comes with several Makefiles. The standard

Makefile produces a sequential code sky3d.seq, the file Makefile.openmp a parallel
code using OpenMP, while Makefile.mpi should produce an MPI distributed system code.

The Makefiles are written for the gfortran compiler and the commands and options
must be adapted if other compilers are used. The user may also have to modify the
library names and execution of the code under MPI will require consulting
the local documentation or system administrator.

No attempt was made to select the compiler and linker options optimally for speed,
since experience has shown that optimization at the cutting edge is highly time-
dependent. Thus users should do some speed tests before embarking on major calcu-
lations.

9.2. External libraries needed
The LAPACK library is used in the code to supply the routines ZHBEVD and DSYEV.

LAPACK should be installed in most scientific computing centers; if not, the files can be
obtained from www.netlib.org and just be added as additional source files to the code.
Note that a complete set of routines called by these two subroutines must be downloaded.

The other external routine library that is used is FFTW3. Again, it will be preinstalled
in most systems. If not, there are two possibilities:

1. Download the source code from www.fftw.org and compile the library yourself.
In our experience this worked smoothly. The generated library can be installed in
a system library directory or kept in a user account. In the latter case the use of
-lfftw3 in the makefiles does not work anymore and the full path name of the
library file must be given.

2. Replace it by another FFT routine. This requires quite a bit of work: FFTW or-
ganizes its calls around “plans”, which describe a set of operations to be done on
the three-dimensional arrays. In init fft quite sophisticated plans are set up to,
for example, transform in the y-direction for all x- and z-values. This means that
all calls to subroutines beginning with dfftw have to be examined and possibly
replaced by loops over one-dimensional FFT transforms. This should be relatively
straightforward, but there are two more important points to consider: 1) normal-
ization differs between FFT codes. For FFTW transformation followed by inverse
transformation multiplies the original data by nx*ny*nz and this factor is taken
into account in several places. 2) For the non-periodic case the Fourier transform
in the Coulomb solver uses doubled dimensions in all three directions. Some FFT
codes have an initialization that sets up the transformation factors depending on
the dimension; in such cases the initialization may have to be repeated.

9.3. Running with OPENMP

The OPENMP version can be compiled using the file Makefile.openmp, which produces
an executable sky3d.omp. The main difference to the sequential makefile is the addition
of an openmp compiler option. Since this depends on the compiler used, it may have to

101

be modified. For gfortran the option is -fopenmp, while for Intel Fortran it is simply
-openmp.

For controlling the running of the code the user should set the environment variable
OMP NUM THREADS to the number of parallel threads to be used (usually the number of
processors). In addition it may be necessary to set OMP STACKSIZE. The two parallel loops
in dynamichf need to store all the density fields in parallel, and the second loop adds ps4
to that. Taking into account vector fields and isospin, a total of 24 three-dimensional
COMPLEX(8) fields need to be stored, amounting to nx*ny*nz*24*16 bytes, which is the
stack size needed.

9.4. Running under MPI

The situation for MPI is a bit more complex than for OPENMP, so that the file
Makefile.mpi will almost certainly have to be modified. One crucial difference to
the other makefiles is that the module Parallel is now generated from the source file
parallel.f90. In addition the compilation commands have to be adapted; something
like mpif90 will be needed but is installation dependent. In addition a command like
mpirun will be needed for execution; the user is advised to consult local documentation.

9.5. Required input
Here it is just summarized what input is needed for a static or dynamic calculation.

A full description can be found with the documentation for the NAMELISTs.

9.5.1. Static calculation
The NAMELISTs needed are, in that order:

files, force, main, grid, static. In addition, if initialization is from frag-
ments, fragments, and for user initialization possibly user (only if the user
initialization requires input).

9.5.2. Dynamic calculation
The NAMELISTs needed are, in that order:

files, force, main, grid, dynamic, For external field excitation extern, and
in all cases fragments.

9.6. Test cases
To allow checking the proper behavior of the code, we provide three test cases ex-

ercising different functions: a static calculation for the ground state of 16O, a dynamic
calculation using an external excitation to stimulate a giant resonance in 16O, and finally
a sample deep-inelastic collision of two 16O nuclei. The test cases directory contains a
more detailed description of these cases and what to look for principally in the results.
Note that since the calculations are quite large-scale, differences in roundoff errors may
lead to the output not being quite identical to the samples provided.

102

10. Caveats concerning the code

The user should be aware of the limitations of the code in various respects but also
note some less straightforward procedures for improving accuracy in certain cases.

10.1. Static calculations
Since the main use of the code is expected to be in time-dependent calculations, the

static part is less highly developed. The omission of all symmetry restrictions, while very
useful for innovative applications with time-dependence, can cause some problems in the
static case.

1. The spin is not aligned along a fixed direction. Since for even-even nuclei Kramers
degeneracy operates, two degenerate levels will mix in an uncontrolled way to
produce an arbitrary spin alignment. This can be remedied by diagonalizing the
spin operators in such a two-level subspace.

2. The center of mass may move away from the origin during the iterations. This is
typically a very small effect and will be corrected when the wave functions are placed
at a given position in the dynamic initialization. The calculation of observables,
however, should always use coordinates relative to the real center of mass.

3. In very heavy nuclei sometimes even a rotation was seen, as the reoccupation of
high-lying levels can change the geometric orientation. If this is a serious problem,
constraints should be introduced or another code used for the static calculation.

4. The harmonic oscillator initialization can be quite deficient for heavier nuclei. It
is planned to develop a Nilsson-model alternative; meanwhile in case of problems
the use of wave functions from axial or symmetry-restricting codes could be imple-
mented by generating a wave function file from such results. Since this will involve
interpolation, a number of static iterations should then be performed using the
present code to improve stability.

10.2. Dynamic calculations
Here it is important what the required accuracy will be. Most exploratory calculations

will not pose high accuracy demands. There are several possible ways in which accuracy
can be improved if needed:

1. The initial configuration may be improved. If the fragment nuclei are not situated
at grid points, one should run a number of static iterations with each fragment
situated alone in the new grid.

2. If the fragments are deformed, the energy estimate from the Rutherford trajectory
will not be reliable; in this case it is recommended to run a number of dynamic iter-
ations, observe the change in relative distance, and then correct the boost energies
to match the correct velocity of relative motion.

11. Modifying the code

Since the code was developed with a view for easy modification, in this Section we
give some advice on how to add new things to it and how to run simulations.

103

11.1. Modifying the Skyrme force
The code comes with a quite large database of Skyrme force parametrizations together

with appropriate pairing parameters built in. This is certainly useful to avoid mistakes
in the input by having to indicate only the name of the force. Still there will be a need
to add new forces and even forces with a different density functional to it, for which we
suggest three different approaches.

11.1.1. Direct parameter input
If a specific parametrization is not expected to be a permanent addition to the code,

for example if one or several parameters are varied to study the sensitivity of the results
to specific parts of the density functional, the best way is to use the facility for giving
the parameters directly in the input. This is triggered by using some force name that
is not in the database, in which case the routine expects all parameters to be given in
NAMELIST forces.

11.1.2. Expanding the database
At present the database of forces is contained in the file forces.data as a long

initialization statement. This has the advantage of readability and avoids having to
make a database file accessible in every directory used for code applications.

So a new force which will be used more permanently can be added simply by adding
the appropriate lines in forces.data and increasing the number assigned to nforce
accordingly. There is a slight danger that the total length of the list will exceed the
255 lines allowed by the Fortran standard; in this case either remove some outdated
forces, remove the separation lines of all stars, or if there is still a problem, convert the
initialization to DATA statements initializing a smaller number of forces in each case.

11.1.3. Adding new physics to the density functional
This can of course require a lot more modifications to the code. Generally speaking,

such a new term will appear not only in the density functional, but also leads to new
contributions in the single-particle Hamiltonian and may require new types of densities
and currents. In addition, it will involve new force parameters. So in general the following
steps will be needed:

1. Parameter definition: The new parameter can be added to the general Force
type definition in forces.f90. This is the most logical and systematic way, but
we recommend it only if the new physics is to be there permanently, since in this
case the whole database has to be updated to give a default value — probably zero
— to the new parameter for each existing force. The alternative is to leave this
parameter as a separate entity, which can still be a module variable in Forces and
be input using the same namelist. Derived parameters should also be calculated
here.

2. New densities and currents: everything that can be defined directly as a sum
over the occupied single-particle wave functions should be defined and calculated
in module Densities. It should be a module variable and allocated during ini-
tialization similar to the densities already defined. Then the contributions of the
different derivatives of the wave function can be accumulated separately as is done
for the existing contributions.

104

3. Calculation of mean-field components: subroutine skyrme in module
Meanfield is the place where the fields appearing in the single-particle Hamil-
tonian are calculated. The difference to module Densities is that wave functions
are not involved directly, but only combinations and derivatives of the densities
and currents need to be evaluated. The new fields should be defined and allocated
and then calculated in subroutine skyrme. The handling of derivatives again can
be imitated based on the existing terms.

4. Single-particle Hamiltonian: The additional contribution to the single-particle
Hamiltonian must be calculated in subroutine hpsi of module Meanfield. Code
has to be added to calculate how the additional terms act on the input wave function
pinn and the result has to be added to the output wave function pout. Again, for
efficiency the spatial derivatives can be handled in separate loops.

5. Contribution to the energy: subroutine integ energy in module Energies
must include an additional contribution of the new term, which in this case means
simply computing the expression for the energy functional. Probably it will be
useful to add this up in some new variable (defined as a module variable), so that
the contribution of the new term can be printed out together with the other con-
tributions in subroutines sinfo of module Static or subroutine tinfo of module
Dynamic, respectively.

6. Output of densities: it may be desirable to write out the new densities, cur-
rents, or mean-field contributions into the *.tdd files. To do that, subroutine
write densities in module Inout must be modified. A new letter to use for
writeselect must be defined and selected in the SELECT CASE statement, and
then depending on whether it is a scalar or a vector field, write one density or
write vec density is called with a descriptive name given to the field.
The complication that occurs here is that these writing routines assume isospin-
dependent fields and output either isospin-separate or isospin-summed fields de-
pending on the value of write isospin. If the field has no isospin dependence, the
statements used to output wcoul should be imitated.

11.2. Using constraints in the static calculation
There are many situations in which it is useful to solve the static Hartree-Fock equa-

tions with added constraints. The most well-known application is a quadrupole con-
straint, in which the expectation value 〈Ψ|Ĥ−λQ̂20|Ψ〉 is minimized to obtain deformed
states of the nucleus. In the simplest case the Lagrange multiplier λ may be kept fixed,
in which case one has to accept the resulting quadrupole moment, or, alternatively, some
iterative change in λ is applied to make the solution converge to a desired value for
〈Ψ|Q̂20|Ψ〉.

The various ways of introducing a constraint are discussed extensively in chapter 7.6
of [52], so that here we only briefly discuss practical considerations for adding a constraint
to Sky3D.

Adding a constraint corresponds to including another potential term in the single-
particle Hamiltonian, e. g., for the quadrupole case

ĥ −→ ĥ− λ(2z2 − x2 − y2) (40)

This could be implemented essentially analogously to the use of an external exciting field
in the time-dependent case. Construct a subroutine to compute this external potential

105

and add it to the mean-field potential upot. This should be applied every time the
single-particle Hamiltonian is applied to a wave function in module Static, i. e., after
each call to subroutine skyrme. Then an additional subroutine should be written which
is called at the end of each iteration to compute the expectation value of the constraining
operator (if not already done elsewhere in the code) and adjust the value of λ if necessary.
The method for adjusting λ will depend on the specific constraint used [? ?].

If the constraint is generated by some thing more complicated than a scalar potential,
like the orbital and spin operators in the case of cranking, it will be more convenient to
implement the constraint inside the subroutine hpsi at those places where the appropri-
ate derivatives are available.

Since the numerical method used does not restrict deformation, care must be taken
for unstable constraints like the quadrupole, which can go to large values at the edges
of the computational box and may pull the wave functions there. If that becomes a
problem, the operator should be damped suitably [50].

11.3. Analyzing the results in new ways
The code provides quite a large number of physical observables in its output files. For

new applications it may be necessary to look at additional ones. There are essentially
two ways to implement this:

1. If the new observable depends only on density and mean-field components, the
easiest way is to use the *.tdd files, where if necessary more fields can be output
by modifying the subroutine write densities. As an example for reading the
*.tdd files, we provide a code calculating the tensor of inertia among the utilities.

2. It becomes more complicated if the wave functions have to be used. Here one
possibility is to add a call to a user-written routine at the beginning of the static
or dynamic loops, which then can use the array psi in any way desired. This may
not be a good option if the calculations are lengthy and the analysis routine may
have to be modified several times. In this case it is better to generate a new file
name for the wffile each time write wavefunctions is called, similar to the way
it is done in write densities, and to do the analysis by reading the wave function
files.

Acknowledgments

This work was supported by the Bundesministerium für Bildung und Forschung under
contract No. 05P12RFFTG, by the UK STFC under grant number ST/J000051/1, and by
the U.S. Department of Energy under grant No. DE-FG02-96ER40975 with Vanderbilt
University.

References

[1] A. L. Fetter, J. D. Walecke, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York,
1971.

[2] J. Maruhn, P.-G. Reinhard, E. Suraud, Simple models of many-fermions systems, Springer, Berlin,
2010.

[3] R. M. Dreizler, E. K. U. Gross, Density Functional Theory: An Approach to the Quantum Many-
Body Problem, Springer-Verlag, Berlin, 1990.

106

[4] M. Bender, P.-H. Heenen, P.-G. Reinhard, Self-consistent mean-field models for nuclear structure,
Rev. Mod. Phys. 75 (2003) 121.
URL http://dx.doi.org/10.1103/RevModPhys.75.121

[5] P. Dirac, Exchange phenomena in the Thomas-Fermi-atom , Proc. Cambridge Philos. Soc. 26 (1930)
376.

[6] G. E. Brown, Unified Theory of Nuclear Models and Forces, 3rd Edition, North-Holland, Amster-
dam, London, 1971.

[7] P.-G. Reinhard, E. Suraud, Introduction to Cluster Dynamics, Wiley, New York, 2004.
[8] P. Bonche, S. E. Koonin, J. W. Negele, One–dimensional nuclear dynamics with time–dependent

hartree–fock approximation, Phys. Rev. C 13 (1976) 1226–1258.
[9] J. W. Negele, The mean–field theory of nuclear structure and dynamics, Rev. Mod. Phys. 54 (1982)

913–1015.
[10] K. T. R. Davies, K. R. S. Devi, S. E. Koonin, M. R. Strayer, TDHF calculations of heavy–ion

collisions, in: D. A. Bromley (Ed.), Treatise on Heavy–Ion Physics, Vol. 3 Compound System
Phenomena, Plenum Press, New York, 1985, p. 3.

[11] J. J. Bai, R. Y. Cusson, J. Wu, P.-G. Reinhard, H. Stöcker, W. Greiner, M. R. Strayer, Mean field
model for relativistic heavy ion collisions, Z. Phys. A 326 (1987) 269–277.

[12] H. Berghammer, D. Vretenar, P. Ring, Computer program for the time-evolution of a nuclear system
in relativistic mean-field theory, Comp. Phys. Comm. 88 (1995) 293.

[13] D. Vretenar, A. Afanasjev, G. Lalazissis, P. Ring, Relativistic hartree-bogoliubov theory: Static
and dynamic aspects of exotic nuclear structure, Phys. Rep. 409 (2005) 101.

[14] Y. Hashimoto, K. Nodeki, A numerical method of solving time-dependent hartree-fock-bogoliubov
equation with gogny interaction, arXiv:0707.3083.

[15] A. Umar, V. Oberacker, Density-constrained time-dependent hartree-fock calculation of 16o +
208pb fusion cross-sections, Eur. Phys. J. A 39 (2009) 243. doi:10.1140/epja/i2008-10712-5.

[16] N. Loebl, A. S. Umar, J. A. Maruhn, P.-G. Reinhard, P. D. Stevenson, V. E. Oberacker, Single-
particle dissipation in a time-dependent hartree-fock approach studied from a phase-space perspec-
tive, Phys. Rev. C 86 (2012) 024608. doi:10.1103/PhysRevC.86.024608.
URL http://link.aps.org/doi/10.1103/PhysRevC.86.024608

[17] C. Simenel, P. Chomaz, Phys. Rev. C 68 (2003) 024302.
[18] J. Maruhn, P.-G. Reinhard, P. Stevenson, I. Stone, M. Strayer, Phys. Rev. C 71 (2005) 064328.
[19] A. S. Umar, V. E. Oberacker, Phys. Rev. C 71 (2005) 034314.
[20] T. Nakatsukasa, K. Yabana, Phys. Rev. C 71 (2005) 024301.
[21] C. Simenel, Nuclear quantum many-body dynamics, The European Physical Journal A 48 (11)

(2012) 1–49. doi:10.1140/epja/i2012-12152-0.
URL http://dx.doi.org/10.1140/epja/i2012-12152-0

[22] A. S. Umar, V. E. Oberacker, Time dependent hartree-fock fusion calculations for spherical, de-
formed systems, Phys. Rev. C 74 (2) (2006) 024606. doi:10.1103/PhysRevC.74.024606.

[23] K. Washiyama, D. Lacroix, Energy dependence of the nucleus-nucleus potential close to the coulomb
barrier, Phys. Rev. C 78 (2) (2008) 024610. doi:10.1103/PhysRevC.78.024610.

[24] C. Simenel, M. Dasgupta, D. Hinde, E. Williams, Microscopic approach to coupled-channels effects
on fusion, Phys. Rev. C 88 (6) (2013) 064604. doi:10.1103/PhysRevC.88.064604.
URL http://link.aps.org/doi/10.1103/PhysRevC.88.064604

[25] C. Simenel, Particle transfer reactions with the time-dependent hartree-fock theory us-
ing a particle number projection technique, Phys. Rev. Lett. 105 (19) (2010) 192701.
doi:10.1103/PhysRevLett.105.192701.

[26] P. Goddard, N. Cooper, V. Werner, G. Rusev, P. Stevenson, a. Rios, C. Bernards,
a. Chakraborty, B. Crider, J. Glorius, R. Ilieva, J. Kelley, E. Kwan, E. Pe-
ters, N. Pietralla, R. Raut, C. Romig, D. Savran, L. Schnorrenberger, M. Smith,
K. Sonnabend, a. Tonchev, W. Tornow, S. Yates, Dipole response of ¡span class=”aps-inline-
formula”¿¡math¿¡msup¿¡mrow¿¡/mrow¿¡mn¿76¡/mn¿¡/msup¿¡/math¿¡/span¿Se above 4 MeV,
Physical Review C 88 (6) (2013) 064308. doi:10.1103/PhysRevC.88.064308.
URL http://link.aps.org/doi/10.1103/PhysRevC.88.064308

[27] R. Balian, M. Vénéroni, Fluctuations in a time-dependent mean-field approach, Phys. Lett. B
136 (5–6) (1984) 301–306. doi:10.1016/0370-2693(84)92008-2.
URL http://www.sciencedirect.com/science/article/pii/0370269384920082

[28] J. M. A. Broomfield, P. D. Stevenson, Mass dispersions from giant dipole resonances using the
BalianVénéroni variational approach, Journal of Physics G: Nuclear and Particle Physics 35 (9)
(2008) 095102. doi:10.1088/0954-3899/35/9/095102.

107

URL http://stacks.iop.org/0954-3899/35/i=9/a=095102?key=crossref.1508d88d4e2901b4fce484de470d4ed8

[29] C. Simenel, Particle-number fluctuations and correlations in transfer reactions obtained us-
ing the balian-veneroni variational principle, Phys. Rev. Lett. 106 (11) (2011) 112502.
doi:10.1103/PhysRevLett.106.112502.

[30] B. Avez, C. Simenel, P. Chomaz, Pairing vibrations study from time-dependent
hartree-fock-bogoliubov formalism, Intl. J. Mod. Phys. E 18 (10) (2009) 2103–2107.
doi:10.1142/S0218301309014378.

[31] B. Avez, P. Chomaz, T. Duguet, C. Simenel, Pairing vibrations study using a time-
dependent energy-density-functional approach, Mod. Phys. Lett. A 25 (21-23) (2010) 1997–1998.
doi:10.1142/S0217732310000836.

[32] S. Ebata, T. Nakatsukasa, T. Inakura, K. Yoshida, Y. Hashimoto, K. Yabana, hys. Rev. C 82 (2010)
034306.

[33] D. Lacroix, P. Chomaz, S. Ayik, On the simulation of extended {TDHF} theory, Nucl. Phys. A
651 (4) (1999) 369 – 378. doi:http://dx.doi.org/10.1016/S0375-9474(99)00136-0.
URL http://www.sciencedirect.com/science/article/pii/S0375947499001360

[34] M. Tohyama, A. S. Umar, Quadrupole resonances in unstable oxygen isotopes in time-dependent
density-matrix formalism, Phys. Lett. B 549 (1-2) (2002) 72–78. doi:10.1016/S0370-2693(02)02885-
X.

[35] Y. M. Engel, D. M. Brink, K. Goeke, S. J. Krieger, D. Vautherin, Time-dependent hartree–fock
theory with skyrme’s interaction, Nucl. Phys. A 249 (1975) 215–238.

[36] J. Dobaczewski, J. Dudek, Time-odd components in the mean field of rotating superdeformed nuclei,
Phys. Rev. C 52 (1995) 1827–1839. doi:10.1103/PhysRevC.52.1827.
URL http://link.aps.org/doi/10.1103/PhysRevC.52.1827

[37] A. S. Umar, V. E. Oberacker, Tdhf studies with modern skyrme forces, Eur. Phys. J. A 25 (2005)
553–554. doi:10.1140/epjad/i2005-06-087-y.

[38] J. Erler, P. Klüpfel, P.-G. Reinhard, Self-consistent nuclear mean-field models: example skyrme-
hartree-fock, J. Phys. G 38 (2011) 033101. doi:10.1088/0954-3899/38/3/033101.

[39] J. C. Slater, Phys. Rev. 81 (1951) 385.
[40] P. Klüpfel, P.-G. Reinhard, T. J. Bürvenich, J. A. Maruhn, Variations on a theme by Skyrme,

Phys.Rev. C 79 (2009) 034310, http://www.arxiv.org/abs/0804.3385.
URL http://link.aps.org/doi/10.1103/PhysRevC.79.034310

[41] P. Klüpfel, J. Erler, P.-G. Reinhard, J. A. Maruhn, Systematics of collective correla-
tion energies from self-consistent mean-field calculations, Eur. Phys. J A 37 (2008) 343,
http://www.arxiv.org/abs/0804.340.
URL http://dx.doi.org/10.1140/epja/i2008-10633-3

[42] J. Bartel, P. Quentin, M. Brack, C. Guet, H.-B. H̊akansson, Towards a better parametrisation of
skyrme forces: A critical study of the SkM force, Nucl. Phys. A 386 (1982) 79–100.

[43] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, New skyrme effective forces for super-
novae and neutron rich nuclei, Physica Scripta 1995 (T56) (1995) 231.
URL http://stacks.iop.org/1402-4896/1995/i=T56/a=034

[44] K.-H. Kim, T. Otsuka, P. Bonche, Three-dimensional tdhf calculations for reactions of unstable
nuclei, Journal of Physics G: Nuclear and Particle Physics 23 (10) (1997) 1267.
URL http://stacks.iop.org/0954-3899/23/i=10/a=014

[45] M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M. V.
Stoitsov, S. M. Wild, Nuclear energy density optimization: Large deformations, Phys. Rev. C 85
(2012) 024304. doi:10.1103/PhysRevC.85.024304.
URL http://link.aps.org/doi/10.1103/PhysRevC.85.024304

[46] E. Perlińska, S. G. Rohoziński, J. Dobaczewski, W. Nazarewicz, Local density approximation for
proton-neutron pairing correlations: For malism, Phys. Rev. C 69 (1) (2004) 014316.

[47] K. J. Pototzky, J. Erler, P.-G. Reinhard, V. O. Nesterenko, Properties of odd nuclei and the impact
of time-odd mean fields: A systematic skyrme-hartree-fock analysis, Eur. Phys. J. A 46 (2010) 299.
doi:10.1140/epja/i2010-11045-6.

[48] D. Vautherin, D. M. Brink, Hartree–fock calculations with skyrme’s interaction I. spherical nuclei,
Phys. Rev. C 5 (1972) 626.

[49] P.-G. Reinhard, H. Flocard, Nuclear effective forces and isotope shifts, Nucl. Phys. A 584 (1995)
467–488.

[50] K. Rutz, J. Maruhn, P.-G. Reinhard, W. Greiner, Fission barriers and asymmetric ground states in
the relativistic mean field theory, Nucl. Phys. A 590 (1995) 680, http://www.arxiv.org/abs/nucl-
th/9610037.

108

[51] W. Greiner, J. A. Maruhn, Nuclear Models, Springer Verlag, New York, 1996.
[52] P. Ring, P. Schuck, The Nuclear Many-Body Problem, Springer–Verl., New York, Heidelberg, Berlin,

1980.
[53] P.-G. Reinhard, M. Bender, K. Rutz, J. Maruhn, An HFB scheme in natural orbitals, Z. Phys. A

358 (1997) 277, http://www.arxiv.org/abs/nucl-th/9705054.
[54] M. Bender, K. Rutz, P.-G. Reinhard, J. Maruhn, Pairing gaps from nuclear mean–field models,

Eur. Phys. J. A 8 (2000) 59, http://www.arxiv.org/abs/nucl-th/0005028.
[55] P.-G. Reinhard, R. Cusson, A comparative study of Hartree-Fock iteration techniques, Nucl. Phys.

A 378 (1982) 418.
[56] V. Blum, G. Lauritsch, J. Maruhn, P.-G. Reinhard, Comparison of coordinate-space techniques in

nuclear mean-field calculations, J. Comp. Phys. 100 (1992) 364.
[57] G. Bertsch, private communication (2012).
[58] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art

of Scientific Computing, 2nd Edition, Cambridge University Press, New York, 1992.
[59] F. Calvayrac, E. Suraud, P.-G. Reinhard, Spectral signals from electronic dynamics in sodium

clusters, Ann. Phys. (N.Y.) 255 (1997) 125.
URL http://dx.doi.org/10.1006/aphy.1996.5654

[60] P.-G. Reinhard, L. Guo, J. A. Maruhn, Nuclear giant resonances and linear response, Eur. Phys. J.
A 32 (2007) 19, http://www.arxiv.org/abs/nucl-th/0703044.
URL http://dx.doi.org/10.1140/epja/i2007-10366-9

[61] P.-G. Reinhard, From sum rules to RPA: 1. nuclei, Ann. Phys. (Leipzig) 504 (1992) 632.
[62] N. Loebl, J. Maruhn, P.-G. Reinhard, Equilibration in the time-dependent hartree-fock ap-

proach probed with the wigner distribution function, Phys. Rev. C 84 (2011) 034608.
doi:10.1103/PhysRevC.84.034608.
URL http://link.aps.org/doi/10.1103/PhysRevC.84.034608

[63] P.-G. Reinhard, P. D. Stevenson, D. Almehed, J. A. Maruhn, M. R. Strayer, Role of boundary
conditions in dynamic studies of nuclear giant resonances, Phys. Rev. E 73 (2006) 036709.
URL http://link.aps.org/doi/10.1103/PhysRevE.73.036709

[64] P. Bonche, B. Grammaticos, S. E. Koonin, Three-dimensional time-dependent hartree-fock calcu-
lations of 16O +16 O and 40Ca +40 Ca fusion cross sections, Phys. Rev. C 17 (1978) 1700.

[65] L. Guo, P.-G. Reinhard, J. A. Maruhn, Conservation properties in the time-dependent Hartree Fock
theory, Phys. Rev. C 77 (2008) 041301, http://www.arxiv.org/abs/0804.2127.
URL http://link.aps.org/doi/10.1103/PhysRevC.77.041301

[66] U. De Giovannini, D. Varsano, M. A. L. Marques, H. Appel, E. K. U. Gross, A. Rubio, Ab ini-
tio angle- and energy-resolved photoelectron spectros copy with time-dependent density-functional
theory, Phys. Rev. A 85 (2012) 062515. doi:10.1103/PhysRevA.85.062515.

[67] K. Boucke, H. Schmitz, H.-J. Kull, Radiation conditions for the time-dependent schroedinger equa-
tion: Applications to strong field photoionization, Phys. Rev. A 56 (1997) 763.

[68] M. Mangin-Brinet, J. Carbonell, C. Gignoux, Exact boundary conditions at finite distance for the
time-dependent schrodinger equation, Phys. Rev. A 57 (1998) 3245.

[69] C. I. Pardi, P. D. Stevenson, Continuum time-dependent Hartree-Fock method for giant resonances
in spherical nuclei, Physical Review C 87 (1) (2013) 014330. doi:10.1103/PhysRevC.87.014330.
URL http://link.aps.org/doi/10.1103/PhysRevC.87.014330

[70] C. I. Pardi, P. D. Stevenson, K. Xu, arXiv:1306.4500.
[71] J. L. Krause, K. J. Schafer, K. C. Kulander, Phys. Rev. A 45 (1992) 4998.
[72] P.-G. Reinhard, E. Suraud, Cluster dynamics in strong laser fields, in: M. A. L. Marques, C. A.

Ullrich, F. Nogueira (Eds.), Time-dependent density functional theory, Vol. 706 of Lecture Notes
in Physics, Springer, Berlin, 2006, p. 391.
URL http://dx.doi.org/10.1007/3-540-35426-3 26

[73] B. Chapman, G. Jost, R. van der Pas, Using OpenMP, MIT Press, Cambridge, 2008.
[74] MPI: A Message-Passing Interface Standard, Version 3.0, High Performance Computing Center,

Stuttgart, 2012.
[75] M. Frigo, S. G. Johnson, The design and implementation of fftw3, Proc. IEEE 93 (2005) 216.

doi:doi:10.1109/JPROC.2004.840301.
[76] J. W. Eastwood, D. R. K. Brownrigg, J. Comp. Phys. 32 (1979) 24.

109

Index of modules

Coulomb, 39, 54, 68

Densities, 42, 67
Dynamic, 44, 88

Energies, 48, 53, 73
External, 44, 50, 95

Forces, 52, 92
Fourier, 54
Fragments, 55

Grids, 27, 59, 83

Inout, 61

Levels, 27, 64, 73, 76
levels, 83

Main3D, 38
Meanfield, 42, 53, 67
Moment, 71

Pairs, 52, 73
Parallel, 56, 64, 76
Params, 78, 92, 93

Static, 69, 81

Trivial, 54, 85
Twobody, 87

User, 91, 93, 96

110

Index of procedures

add densities, 44
add density, 42, 43, 67
alloc densities, 42
alloc fields, 67
alloc levels, 65
alloc nodes, 5, 76
allocate nodes, 77

bcs occupation, 75
boost fragment, 58
bplina, 63

cdervx, 27, 65
cdervy, 27, 65
cdervz, 27, 65
cmulx, 85
cmuly, 85
cmulz, 85
collect densities, 45, 77
collect sp properties, 77
coulinit, 41, 54

diagstep, 82, 84
divpoint, 88, 89
dynamichf, 38, 44

energy, 53
extboost, 44, 51
extfld, 45, 46, 51

finish mpi, 77

gauss, 60
getin dynamic, 44
getin external, 44, 50
getin fragments, 38, 56
getin static, 81
getslope, 89
grstep, 69, 82, 83

harmosc, 38
hpsi, 69

init all mpi, 76
init coord, 59

init fft, 101
init grid, 59
init static, 38, 81
init user, 38, 93
initfft, 54
initiq, 41
integ energy, 47, 48, 53, 84

laplace, 66, 83
locate, 57

moment print, 47, 72, 84
moment shortprint, 72, 97
moments, 72, 80, 84, 93

overlap, 85

pair, 73
pairdn, 74
pairgap, 74
phases, 58
plot densities, 47
plot density, 63
poisson, 41, 68
print extfield, 46, 51

q2diag, 72

rbrent, 74
read force, 53
read fragments, 57
read one fragment, 57, 58
resetcm, 45, 47
rmulx, 54, 86
rmuly, 54, 86
rmulz, 54, 86
rpsnorm, 85

schmid, 66, 82
sder, 27, 60
sder2, 27, 60
setdmc, 60, 83, 94
setup damping, 60, 81
sinfo, 82, 84, 96, 97
skyrme, 42, 45, 46, 53, 67, 82

111

sp properties, 47, 63, 82
start protocol, 63
statichf, 38, 81
sum energy, 49, 84

tinfo, 45, 46, 46, 97
tstep, 43, 45, 46
twobody case, 88
twobody init, 57, 58
twobody print, 47

user init, 81, 91

write densities, 47, 62, 93, 106
write one density, 63
write vec density, 5, 63
write wavefunctions, 55, 61, 64, 106

112

Index of variables

addco, 82
addnew, 82, 82
amplq0, 50, 95
aq, 67
avdelt, 73, 74
avg, 73, 74

b, 55, 58, 95
b4p, 52
beta, 72
beta20, 71
beta20tot, 71
beta22, 71
beta22tot, 71
bmass, 67, 82

cdmpx, 59, 83
cdmpy, 59
cdmpz, 59
charge number, 61, 64, 81
cm, 61, 71
cmtot, 71
converfile, 78, 84, 92
current, 42

db, 78
dbmass, 68
DDDI, 74, 92
dddi, 52
delesum, 81, 82, 84
deltaf, 73, 73, 74
denerg, 82, 83
der1x, 59
der1y, 59
der1z, 59
der2x, 59
der2y, 59
der2z, 59
derv1x, 27
derv1y, 27
derv1z, 27
derv2x, 27
derv2y, 27
derv2z, 27

dipolesfile, 46, 78, 84, 92
divaq, 67, 68
dt, 44, 94
dx, 59, 61, 62, 93
dy, 59, 61, 62, 93
dz, 59, 61, 62, 93

e0dmp, 81, 83, 94
e0inv, 66
e2, 78
ecm, 55, 57, 58, 95
ecoll, 47
ecorc, 48
eferm, 73
ehf, 84
ehf0, 48
ehf1, 48
ehf2, 48
ehf3, 48
ehfc, 48
ehfint, 47
ehfls, 48
ehft, 48
energiesfile, 47, 78, 92
epair, 73, 73, 74
esf, 44
ex, 49, 68
extfield, 50
extfieldfile, 51, 78, 92

f, 52
fboost, 55, 57, 58, 95
fcent, 55, 95
fcmtot, 57
filename, 55, 95
fix boost, 55, 57, 95
flocalindex, 57
fnewnpmin, 56
fnewnpsi, 56
fnode, 57
fnumber, 56
fwocc, 56

gamma, 72

113

globalindex, 76, 77
gobalindex, 77

h2m, 52
h2ma, 53, 53
hbc, 53, 78
hmatr, 64, 82, 84

imode, 38, 79, 93
ipair, 52
ipulse, 50, 95
isoext, 50, 95
isospin, 65
istwobody, 87
iter, 61, 62, 79

localindex, 56, 61, 76, 77

mass number, 61, 64, 81
maxiter, 81
mnof, 55, 80
momentafile, 46, 78, 84, 92
monopolesfile, 78, 92
mpi myproc, 76
mpi nprocs, 61
mplot, 79, 84, 93
mprint, 46, 47, 79, 93, 96, 98, 99
mrescm, 45
mrest, 46, 82, 93
mxpact, 44, 45, 94
mxpact/2, 45

nneut, 61, 64, 81, 94
node, 56, 61, 76, 77
nof, 38, 80, 93, 95
npmin, 56, 64
npmin(2), 57
nprot, 61, 64, 81, 94
npsi, 56, 61, 64, 81, 94
nselect, 62, 79
nstloc, 61, 64
nstmax, 56, 61, 64
nt, 44, 94
nucleon mass, 53, 53
number, 61, 64
nx, 59, 61, 62, 93
ny, 59, 61, 62, 93
nz, 59, 61, 62, 93

omega, 50, 95
orbital, 48

p, 52
pbackward, 54
pcm, 71
periodic, 39, 59, 93
pforward, 54
pi, 78
pnr, 71
pnrtot, 71
power, 52
printnow, 46, 79
psi, 45, 64, 84, 106

q20, 71
q20tot, 71
q22, 71
q22tot, 71
quadrupolesfile, 78, 92

r0, 80, 93
radext, 50, 95
radinx, 81, 94
radiny, 81, 94
radinz, 81, 94
rdot, 47, 87
rho, 42, 82
rho0pr, 74
rms, 71, 72
rmstot, 71
roft, 87
rsep, 44, 47, 94

scratch, 78
scratch2, 78
sdens, 42
serr, 81, 82, 94
slope, 89
sodens, 42, 68
sp efluct1, 49, 61, 65, 83, 98
sp efluct2, 49, 65, 83, 98
sp energy, 61, 63, 65, 76
sp kinetic, 61, 63, 65
sp norm, 61, 65
sp orbital, 63, 65
sp parity, 61, 65

114

sp spin, 63, 65
spin, 48
spinfile, 46, 47, 78, 84, 92
spot, 67, 68
sumflu, 81, 82, 94

t0, 52
t1, 52
t2, 52
t3, 52
t4, 52
taddnew, 82
tau, 42, 82
tau0, 50, 95
taut, 50, 95
tcoul, 79, 93
tdiag, 81, 82, 94
tdynamic, 38, 79
text timedep, 44, 44
texternal, 44, 44, 94, 95
textfield periodic, 50
tfft, 79, 93
time, 62, 79
tke, 84
tlarge, 81, 84, 94
tmpi, 76
total angmom, 48
trestart, 79, 93
tstatic, 38, 79
turnoff zpe, 53, 53

upot, 67, 68, 82

VDI, 74, 92
vdi, 52
vrel, 58

wcoul, 40
wffile, 44, 46, 61, 78, 79, 92
wflag, 46, 76, 79
widext, 50, 95
wlspot, 67, 68
wocc, 61, 64, 65, 73, 75
write isospin, 79, 93
writeselect, 62, 79, 93
wxyz, 59, 61, 62, 85

x, 57, 59, 61, 62

x0, 52
x0act, 83
x0dmp, 81, 83, 94
x1, 52
x2, 52
x2m, 71, 72
x2mtot, 71
x3, 52
xbackward, 54
xforward, 54
xli, 58
xmu, 58
xnorm, 83
xnormb, 83

y, 59, 61, 62
ybackward, 54
yforward, 54

z, 59, 61, 62
zbackward, 54
zforward, 54
zpe, 52

115

Index of namelists

dynamic, 44, 94, 95, 102

extern, 95, 102

files, 38, 92, 102
force, 53, 92, 102
fragments, 95, 102

grid, 93, 102

main, 38, 93, 102

static, 38, 81, 94, 102

user, 96, 102

116

