Mean-field concept

(Ref: Isotope Science Facility at Michigan State University,
MSUCL-1345, p. 41, Nov. 2006)




Static Hartree-Fock (HF) theory

Fundamental puzzle: The nucleons interact strongly. How is it
possible for them to move independently in a mean field potential?

Answer: Pauli correlations! Pauli’s spin-statistic theorem requires
nucleons with s=1/2 to be fermions, i.e. the many-body wave function
must be totally anti-symmetric under particle exchange. This
anti-symmetry produces a pair correlation function which keeps

the nucleons apart (see plot next slide).

Consequently, the average distance between nucleons in a nucleus
is about 2.4 fm (see textbook by Ring & Schuck, p.1).

At large distances, the N-N interaction potential is relatively weak:
at R = 2.4 fm we find V('S,) = -2.5 MeV (at R=0.8 fm it has a
value of -100 MeV )
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Nuclear many-particle Hamiltonian and
ground state binding energy

A
Creation operators for nucleon states: C;
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Hartree-Fock (HF) mean-field theory of nuclei:
general remarks

HF is a microscopic theory of nuclear ground state properties.

Excited states (collective and non-collective) are described
by the Random Phase Approximation (RPA) which is based on
HF theory (see slides in section 4.7a).

Main approximation of HF theory:

For simplicity, the many-body ground state wave function is
assumed to be a single Slater determinant, i.e. an anti-
symmetrized product of single-particle wave functions.

Use variational principle to determine the “best possible” set of
single-particle wave functions for the given nuclear many-body
Hamiltonian ( — Hartree-Fock differential equations).



Hartree-Fock (HF) mean-field theory of nuclei:
general remarks

HF formalism generates a (non-existent) one-body “mean field”
potential from the given 2-body and 3-body N-N interaction.
Protons and neutrons move independently in this mean field.
HF thus provides a theoretical justification for the phenomeno-
logical shell models!

NOTE:
HF theory does not include pairing forces, which are included
in the Hartree-Fock-Bogoliubov (HFB) theory, see section 4.6a.



Variational principle (minimize energy functional)
References: Shankar, QM, p. 429 Ring & Schuck, chapter 5

Solving the many-body Schroedinger equation

\H—E||¥)=0

is equivalent to a variational principle (minimize energy functional):
VIH|Y)

5 E[¥]=0 Flw]=
YY)

Useful for determining the many-body ground state because one can prove that for
any arbitrary state vector the energy functional yields an upper bound for the exact
ground state energy:

E[Y|=E,

In the Hartree-Fock approximation, one restricts the trial state vectors to the
subspace of single Slater determinants.



Derivation of HF theory from variational principle
Ref: Blaizot and Ripka, Quantum Theory of Finite Systems, p.177-180

HF | A +A HF
P; =<P, lc,;c,1D," > HF one-body density

HF HF
EO(,O) =<®, |HID;” > HF energy density functional

5[E0(,0) - tr{A(p2 _ P)}] =( Variational principle
LY

Lagrange multiplier condition for single Slater determinant

JE, — <imj> + §<ik"7(2)‘jl>plk + ... mean field Hamiltonian

ij &pﬂ & (in energy representation)

h ¢z> =&, ¢l

[h,p] =0= Hartree-Fock equations

p¢i> =N,




The Hartree mean field:

illustration for simple 2-body N-N interaction
Ref: Ring & Schuck, chapter 5

Assume, for simplicity that 2-body N-N interaction is local, depends only on
position; no momentum-, spin-, or isospin dependence:

V(2)(;;j:|)
The HF formalism generates, from the given 2-body N-N interaction,

a (non-existent) 1-body mean field potential in which the nucleons

move independently. The mean field describes the effect of the 2-
body interactions “on average”.

“Hartree” potential = local mean field (“direct term”)

V,g)(7)=fd3r'V(2)(7,7')p(?')

F
with the ground state density of nucleus given by p(7) = El(pi(?n) 2

i=1



The Fock exchange potential:

illustration for simple 2-body N-N interaction
Ref: Ring & Schuck, chapter 5

In addition, HF theory generates a (generally non-local) “Fock” potential
(“exchange term” due to anti-symmetric product wave functions)

Vi(7.7) = =V (F ) pl7.F)

with the ground state density matrix (generalization of nuclear density)

p(F.F') = Ecvf (7)g.(7)



The self-consistent Hartree-Fock equations:

illustration for simple 2-body N-N interaction
Ref: Ring & Schuck, chapter 5

h .
e
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o.(F)+ [ &rV (7,7)p,(F) = e.9,(7)

(i=1,..,A)

The HF equations represent a set of A coupled differential equations which
determine the single-particle wave functions “self-consistently” from the
given 2-body N-N effective interaction.

The Hartree / Fock potentials depend, via density / density matrix, on the
single-particle wave functions of all A nucleons. This makes the DEs non-linear !

Need iterative solution: In 15t order approximation, start e.g. from shell-model
wave functions to compute density / density matrix. The HF equations then
generate new 2" order wave functions, ...
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Need for “effective” N-N interaction (in nuclear medium)

Computational reason:

N-N potentials exhibit, for some reaction channels, a
strongly repulsive core (= 4000 MeV) at r = 0.5 fm. Potential
becomes very large, wave function becomes very small.
This is numerically unstable.

Many-body physics reasons:

For free N-N scattering, almost all quantum states are
unoccupied; in a heavy nucleus, however, many quantum
states are occupied and thus “Pauli-blocked” (scattering
into these states is forbidden).

For free N-N scattering, the energy of the N-N pair is
conserved, by for N-N scattering in nuclear medium the
energy of N-N pair is not conserved (energy transfer to
other nucleons).



Derive effective interaction (Bruckner G-matrix)

from Bethe-Goldstone equation
Ref: Ring & Schuck, chapter 4.3.1

G-matrix = free N-N
effective interaction interaction
E —

<ab|G" led >=<ab |V lcd > +

1 — 1 E
— E<ab|V|mn> —<mnlG” lcd >
2 E-¢ —-¢ +in

Pauli free N-N single-particle G-matrix =

blocking interaction energies effective interaction

This equation must be solved iteratively; not too hard for infinite nuclear
medium (“nuclear matter”) but fairly difficult for finite nuclei !



Example: tensor components of Reid soft-core N-N interaction
Ref: Sprung and Banerjee, Nucl. Phys. A168, 273 (1971)

solid line: “effective” interaction in nuclear matter, from Bethe-Goldstone eq.
dotted line: free N-N interaction
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Comments on effective N-N interaction

From the numerical results depicted in the last slide we conclude:

« Atdistancesr > 1.0 fm, the free N-N interaction and the effective
interaction are identical !

» At distances r < 1.0 fm, however, the free N-N interaction may become
extremely large (almost singular) while the corresponding effective
N-N interaction is finite everywhere ! This is primarily due to “Pauli
blocking”.

» Therefore, the effective interaction is a better starting point for
numerical calculations, in particular for mean-field theories
(HF, HFB) of heavy nuclei.



Nuclear Mean Field or Energy Density Functional (EDF)

ab-initio | Mean-field - EDF
<W|H|W>=E | — lII-)(I)Slater
H>H,

E=(®|H 4| ®)=] d’r {H(p.T,j.5.T,Jpy :7)+Hepiom(p,)

——

Single-(one-) particle density efc. in terms of s.p. states EDF in NP more complicated
- . v=v - DFT ( Hartee — Fock )
r)= \r,o, \r,o, - NN-eof - o
pq( ) ; Z‘ ol 2 J V#EV 5> DFT ( Kohn— Sham )
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Phenomenological effective N-N interactions:
“Skyrme” interaction

Basic idea of Skyrme (1956): for low-energy nuclear physics, consider potential
in momentum space; expand V in powers of momenta:

— —

p = hk = h(ky — k) p = hk = Wk, — k)

— — — —»2 — —
< Ep@E >= ) + O, (k2 + K ) + Ok
Note: no linear momentum terms which violate time-reversal inv.

Use inverse Fourier transform: constants — delta function, momenta — gradients:

A

v®(7) = Voo (7) + Vi [8(PR2 + K76(7)| + Vak! - 5(7)k
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Skyrme interaction

with relative distance vector 17 = (T_i — 7“3)

and with relative momentum operators

A 1 N 1
k —_— — —_ / - — —
(Vi=Va) K==

2% (V1= V3)

Generalize Skyrme interaction: introduce spin-exchange operator

A

1 S o
£, = 5(14—01 '02)
vsk = Vg, + Vg,

2 2 s
Uglg = 1o (1 + CUOPU) 5(7“) zero-range interaction with spin-exchange
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Skyrme interaction

L (1 xlfja) [5(7?)/%2 /5/25(77)]

2 momentum dependence

4t (1—|—£IZ‘ p ) k“, 5(77)/% simulates finite range
2 24 0 '

+it4(51 -+ 52) : {k/ X 5( )]A{} spin-orbit term

gina) 03 — 12607 — )07 — 17
three-body term (original) Vg, = t35(7“1 — 7“2)5(7“2 — Tg)

For spin-saturated even-even nuclei, it is equivalent to density-dependent
2-body interaction:

—

o) — 0@ (p) = L1+ 25, [p(B)5(7



Skyrme interaction

Determine 10 parameters
Lo, L1,L2,x3, th tla t27 t37 t47 8

by least-square fit to binding energies and radii of known nuclei.



Nuclear energy density functional (Skyrme Hartree-Fock)

Calculate binding energy in nuclear ground state
HF HF HF
Eg.s. =< (I)O ’H‘(I)O >=
2 2 3
< ®HFITW 4 v 4+ vE L v |olF >

HF 3 —
Eg.s_ = /d r H(’I") total energy density
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. e B 1 .
Ho) = 5 [ 1o)==zl

7 — 7

1/3
_262 (i) / [pp(,,:*)]4/3 exchange term

(Slater approximation)

energy density functional for Skyrme N-N interaction

—

Hi(F) = Hs (p(7), 7(7), 5 (7), 8(), T(F), Juu (7))

H depends on various particle / spin densities and currents
which are defined in the next slide.
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[ Densities and currents in EDF }

F
particle density (q=p/n) pq(7) = Z Z i (7, 0

o=1] 1=1
particle current density Jq (7 sz Z Z q)Vi(r,0,q) + c.c]
o="1] 1=1
spin density Sq(7) = Y Yqb q)9;(7,0',q) < o|d|o’ >
(o,0")=1] =1

In addition: particle kinetic energy density
spin kinetic energy density
spin-current tensor J , (contains spin-orbit density)



Nuclear Energy Density Functional
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(s,j,T) time-odd, vanish for static HF calculations of even-even nuclei
non-zero for dynamic calculations, odd mass nuclei, cranking etc.
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