Observables predicted by HF theory

 Total binding energy of the nucleus in its ground state
= separation energies for p / n (= BE differences)

» Ground state density distribution of protons and neutrons
= mean square radii
= EM multipole moments (for deformed g.s. density)

 single particle levels (energies, angular momenta, parity)
= shell gaps (explains magic numbers)
= Fermilevels forp /n

NOTE: HF is a ground state theory.
For excited states we need Random Phase Approximation = RPA



Static Hartree-Fock: numerical implementation

Represent wave functions for all A nucleons on 3-D Cartesian lattice

Grid points:
Ix.  To (a=1,...,Ny)
Y3 (6 =1, ...,Ny)
i Yy _
2 & zy (y=1,..., N,

w(xayaz§ Uzatz) _> w(xowyﬁa s Uzatz)

Wave function on the lattice becomes a complex-numbered array

of dimension
psi(Ny, N, N,,2,2)



Basis-Splines (7" order), periodic boundary condition
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Expand wave function in terms of products of Basis-Spline functions

U(x,y,2:t) = Y Bi(x) Bj(y) Be(z) ¢7*(t)

1,7,k
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Neutron dripline nucleus %40 (T,, = 65 ms)
HFB-2D calculation, SLy4 N-N interaction
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48Ca: HF predicts spherical density distribution,
in agreement with exp. data
620 static iterations, CPU time = 2m 21s (16 INTEL Xeon CPUs)

Convergence of total binding
energy AE / E =-5.7 x 10-°

HF binding energy
=-431.10 MeV

exp. binding energy
=-416.00 MeV

accuracy = 3.4%




Charge densities for various nuclei (electron scattering data vs. theory)
Ref: J.W. Negele, Rev. Mod. Phys. 54, 913 (1982)

--- Mean-Field
Theory

— Experiment

4
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FIG. 11. Comparison of DME mean-field theory charge dis-
tributions in spherical nuclei (dashed lines) with empirical
charge densities. The solid curves and shaded regions
represent the error envelope of densities consistent with the
measured cross sections and their experimental uncertainties.



rms charge radii for several isotope chains.
HF calculation with different Skyrme forces, compared
to exp. data (filled and open diamonds)
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M. Bender, P. Heenen, and P.G. Reinhard,
Rev. Mod. Phys. 75, 122 (2003)



HF neutron single-particle
energies, using several
Skyrme forces, compared
to experiment

M. Bender, P. Heenen,
and P.G. Reinhard,
Rev. Mod. Phys. 75,
122 (2003)
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HF binding energies, calculated with different Skyrme forces.
Plotted is energy difference between experiment and theory.
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249Bk: HF predicts positive quadrupole + hexadecapole
deformation, in agreement with exp. data
6,300 static iterations, CPU time = 2h 50m (16 INTEL Xeon CPUs)

Convergence of total binding
energy AE/E =4.2 x 1010

HF binding energy
=-1,875.11 MeV

exp. binding energy
=-1,864.02 MeV

accuracy = 0.6%
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Constrained Hartree-Fock calculations: collective energy surface
Ref: Ring & Schuck, chapter 7.6

Add electric multipole operators Q) to variational principle

| <@ IHID!" >-Y 4 <®" 10, 10" >

l

0

\ Lagrange multipliers

The values of Lagrange multipliers are determined from the constraint
that the electric multipole operators have a given expectation value

<®" 10, 1D >=¢q,

; € given

As a result of constraints, one obtains the “collective energy surface”

E(G)  ormore explicity  E(Gr:G-G30+Ga05+-)



HF calculation with quadrupole
constraint, for chain of gadolinium
isotopes, using several Skyrme
forces.

upper figure: collective potential
energy surface

lower figure: ground state
deformation, compared to exp.
data

M. Bender, P. Heenen,
and P.G. Reinhard,
Rev. Mod. Phys. 75,
122 (2003)

_lol.l.l.l a1 s 1 . 1 . 1

-0.3 0.2 0.1 0.0 0.1 0.2 03 04 05

2

0.4 1 T T T T T
[[Ga] s
0.3 - i
&0.2 —— BSkl
i — SLy6 |
““““ SkI3
ol ) ——- NL-Z2-
- - - h’w ]
4P 2 TP TP TP SR B 1 . lEx‘pti

82 84 86 88 90 92 94 96 98 100
Neutron Number N

FIG. 13. Transition from spherical to deformed shapes in the
chain of Gd isotopes. Upper panel: HF+ BCS potential-energy
surfaces calculated with the SLy6 interaction for neutron num-
bers ranging from 82 to 90. Lower panel: Ground-state defor-
mation of Gd isotopes for several forces. Pairing is treated
with the BCS method except for BSk1 for which the HFB
method is used. Experimental values are taken from Raman
et al. (2001).
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3-D Skyrme HF calculation, with quadrupole constraint:
double-humped fission barrier for 24°Pu

BURVENICH, BENDER, MARUHN, AND REINHARD

siderations to axially symmetric shapes. Our investigation
also covers the prolate fission path only. It has to be kept in
mind that novel fission paths may emerge for the heaviest of
the nuclides discussed here, which start out from strongly
oblate shapes and proceed through triaxial deformations
[21]. For this and the reasons given above, our results pro-
vide an upper limit for the (static) fission barriers. This limi-
tation holds also for most other work using self-consistent
models published so far, as well as most of the results from
mic-mac approaches.

The deformation energy curves are obtained with a con-

straint on the mass quadrupole moment Q,;=(Q,). For
reflection-asymmetric shapes, we also fix the center of mass

with a constraint on the mass dipole moment (Qlo):O. The

constraints are added to the energy functional by means of
Lagrange multipliers [37]. Besides these constraints, the de-
formation energy is minimized with respect to all axial mul-
tipole moments Q) for protons and neutrons separately. In a

PHYSICAL REVIEW C 69, 014307 (2004)
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FIG. 1. Example for the double-humped fission barrier of the
typical actinide nucleus 2*°Pu. The dotted line denotes an axial and
reflection-symmetric calculation, the full line denotes a triaxial (in-
ner barrier) and axial and reflection-asymmetric calculation (outer
barrier). The various shapes along the axial paths are indicated by
the contours of the total density at pp=0.07 fm™.

15



“Cranked” Hartree-Fock calculations: rotational bands
Ref: Ring & Schuck, chapter 7.7

Add total angular momentum operator to variational principle
3|< " 1HI0) > -w(l) <" 17, 1" >]|=0
\ Lagrange multiplier = cranking frequency

The cranking frequency w(/) depends on ang. mom. quantum number /;
its value is determined from the constraint condition

<" (D)1, 10 (0(I)) >= 1T +1)

As a result of this constraint, one obtains “rotational bands” E(I)

which agree much better with experiment than simple collective models
(microscopic moments of inertia change as function of ang. momentum!)



Cranked HF calculation in 3-D, for two Skyrme forces
Ref: M. Yamagami and K. Matsuyanagi, Nucl. Phys. A672 (2000) 123
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Fig. 1. (a) Excitation energy vs. angular-momentum plot for the yrast structure of 325 calculated
with the SIII force. Density distributions on the plane perpendicular to the rotation axis are shown,
as insets, for the SD band (solid line) and the Y31 band (dashed line). The calculation was done in step
of Awrot =0.2 MeV /hi, and the calculated points (indicated by symbols) are smoothly interpolated
by lines. (b) Same as (a). but with the SkM* force.
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Cranked HF calculation in 3-D, for two Skyrme forces

Ref: M. Yamagami and K. Matsuyanagi, Nucl. Phys. A672 (2000) 123
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Fig. 6. Shape evolution as a function of angular momentum, plotted in the (B2, y) plane for the
SD and HD-like configurations in 325 Results calculated with the SIII and SkM* forces are shown
separately.
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