
Microscopic theory of collective vibrations: 
linear response theory (RPA, QRPA) 

Ref: Ring & Schuck, chapter 8 
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Motivation 

Mean field theories (HF, HFB) describe independent particle motion, 
explain basic properties of ground states very well. 

Excited states, however, show new phenomena: in addition to single-particle 
excitations built on the HF / HFB ground state, one finds collective vibrations 
which represent a “coherent” motion of many nucleons: 

Low-energy vibrations (E* = few MeV) ⇒ surface oscillations (L=2,3, …) 

High-energy vibrations (E* = 10-30 MeV) ⇒ density oscillations =  
                                                                      “giant resonances” (L=0,1,2,3, …) 



Random Phase Approximation (RPA) 
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RPA theory was introduced by Bohm and Pines (1953) to describe plasma 
oscillations. 

In nuclear physics it is used to describe collective vibrations. 

These collective vibrations are caused by the long-range part of the residual 
interaction which leads to particle-hole (p-h) correlations. 

If pairing is included also, the theory is called the Quasi-particle Random  
Phase Approximation (QRPA). 



particle-hole excitations 
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Structure of RPA ground state and excited states 
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In RPA theory, one takes into account p-h correlations not only in excited states, 
but also in the ground state. It can be shown that the RPA ground state contains 
virtual 2p-2h correlations (Ring & Schuck, p. 310): 

€ 

|νRPA >= Ami
ν

m,i
∑ ( ˆ c m

+ ˆ c i) | HF >

Collective vibration = coherent superposition of large number of p-h excitations 

 

| 0RPA >=| HF > + Bmi,nj
0

m,i,n, j
∑ ( ˆ c m

+ ˆ c i)( ˆ c n
+ ˆ c j ) | HF >

where most amplitudes A in the equation above contribute with the same sign. 	
  



Derivation of  RPA equations from Time-dependent 
Hartree-Fock equations: Linear Response Theory 

Ref: Ring & Schuck, p. 315-316 
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We add a time-dependent external field F(t) to the nuclear Hamiltonian 

F(t) is supposed to be a one-body operator (e.g. electric multipole operator) 
and varies harmonically with time at a given frequency ω 

Consider the time-dependent state vector of the system	
  

with associated one-body density	
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ˆ H (t) = ˆ H 0 + ˆ F (t)

 

ˆ F (t) = fkle
− iωt + fkl

+e+iωt[ ]
k,l
∑ ˆ c k

+ ˆ c l
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|Φ(t) >

 

ρkl (t) =<Φ(t) | ˆ c l
+ ˆ c k |Φ(t) >



Derivation of  RPA equations from Time-dependent 
Hartree-Fock equations: Linear Response Theory 
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Approximation: assume state vector is single Slater determinant 

This yields the Time-Dependent Hartree-Fock (TDHF) equations; 
for derivation see e.g. Ring & Schuck, p. 485-488 

In the limit that the time-dep. external field is weak, one obtains a small- 
amplitude density vibration 

  

 

h(ρ) + f (t),ρ[ ] = i∂ρ(t) /∂t 

|Φ(t) >= det[ϕi(t)]

€ 

ρ(t) = ρ(0) +δρ(t)

δρ(t) = ρ(1)e− iωt + ρ(1)
+e+iωt



Derivation of  RPA equations from Time-dependent 
Hartree-Fock equations: Linear Response Theory 
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In the small-amplitude vibrational limit, the TDHF equations 
yield the “linear response equations”	
  

 

ρ(1) = R(ω) f

ρkl
(1) = Rkl ,pq (ω) f pq

p,q
∑

density vibration 
(“response”)	
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R−1(ω )ρ(1) = 0

The RPA equations correspond to the homogeneous part of the 
“linear response equations” (i.e. f=0); eigenvalue problem for ω=ωn	
  

The RPA equations determine the energies of the RPA ground state  
and excited states and their transition strengths.	
  

  

 

En = ω n
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Note: Response function	
  

residual interaction 

contains info about 	
  



Early RPA calculations for 208Pb 
P. Ring and J. Speth, Nucl. Phys. A 235 (1974) 315 
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giant octupole 
 resonance 

2.61 MeV 
octupole 
vibration; 
58 Weisskopf 
units, see 
homework #5 

non-collective transitions 

Approximations: 

Woods-Saxon 
shell model 

use 2 main shells 
above and below 
Fermi surface 

density-dependent 
delta interaction 



Early RPA calculations for 208Pb 
P. Ring and J. Speth, Nucl. Phys. A 235 (1974) 315 
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4.08 MeV 
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giant quadrupole 
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Early RPA calculations for 208Pb 
P. Ring and J. Speth, Nucl. Phys. A 235 (1974) 315 
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Early RPA calculations for 208Pb 
P. Ring and J. Speth, Nucl. Phys. A 235 (1974) 315 
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All  
multipolarities 
(L = 0 – 6) 



Linear response based on 3-D TDHF  
(apply opposite boosts to protons and neutrons)  

Maruhn et al., Phys. Rev. C71, 064328 (2005) 
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Continuum quasi-particle linear response theory 
for neutron-rich isotopes 

Mizuyama, Matsuo & Serizawa, Phys. Rev. C79, 024313 (2009) 
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Strength function of isovector (T=1) 
quadrupole (L=2) response. 

(LM = Landau-Migdal approx.) 

Theory yields both low-energy 
and high-energy collective vibrations 

Skyrme (SkM*) interaction for HFB 
mean field, and density-dependent 
delta interaction for pairing 


