Low-energy heavy-ion physics:
glimpses of the future

There are two frontiers for low-energy heavy-ion physics:

- explore “terra incognita” of thousands of new neutron-rich
isotopes, investigate physics of neutron-dripline,
astrophysics connection: r-process path (Supernovae)

- extension of periodic table: synthesis of new superheavy
elements (currently up to Z=117)
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Nuclear chart and the frontier of neutron-rich nuclei
Ref: Isotope Science Facility proposal, MSU (Nov. 2006)
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Exp. data: neutron dripline for light nuclei (up to Z=8)
Ref: RIA Physics White Paper, Raleigh, NC conference (2000)
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Figure 5: The part of the (N,Z) chart for the lightest nuclei. The neutron drip line has been reached only up
to oxygen (Z = 8) where the heaviest particle-stable isotope has 16 neutrons. Interestingly, the heaviest
isotope of flourine (Z=9) known has 22 neutrons. That is, one additional proton binds at least six neutrons.
Known halo nuclei are marked by red squares. A very elongated "dimer” configuration in *Be has recently
been found at higher excitation energies.



RIB production from CARIBU upgrade at ATLAS

http://www.phy.anl.gov/atlas/caribu/Cf252_upgrade proposal_final _Rev4.pdf
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Figure 4. The r-process path together with the yield expected from an ion source
system based on a 1 Ci californium fission source and the limit of known masses.



Facility for Rare Isotope Beams (FRIB)

under construction at Michigan State University
http://www.frib.msu.edu/
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Major new gamma ray detectors in the U.S.

GRETA = Gamma Ray Energy Tracking Array

GRETINA = smaller version of GRETA

GRETINA consists of 28 highly segmented hyper-pure germanium crystals.
Each crystal is segmented into 36 electrically isolated elements.

Gretina Website http://grfs1.Ibl.gov/




Second frontier: superheavy elements in heavy-ion fusion reactions
Ref: National Nuclear Data Center, Brookhaven
http://www.nndc.bnl.gov/index.jsp
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Exp. discovery of superheavy element Z=117 at Dubna (Russia)
Vanderbilt physicists involved: Professors Hamilton and Ramayya
Phys. Rev. Lett. 104, 142502 (2010)
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Observed decay chains interpreted as originat-

ing from the isotopes A = 294 (single event) and A = 293

(average of five events) of the new

element Z = 117. The

deduced and predicted [9] lifetimes (7 =T,,/In2) and
a-particle energies are shown in black and blue, respectively.

The isotopes 2°3117 and 2°4117 were
produced in fusion reactions between

48 ,Ca and 2*°,Bk. Decay chains involving
11 new nuclei were identified by means
of the Dubna gas-filled recoil separator.
The measured decay properties show a
strong rise of stability for heavier isotopes
with Z 2111, validating the concept of the

long sought island of enhanced stability
for superheavy nuclei.



Current state-of-the-art microscopic theories
of nuclear structure and reactions

Nuclear structure

 Ab initio nuclear structure calculations for light nuclei

« HFB calculations: ground state properties

- HFB with constraints (cranking, Q,,, Q,): rotational bands,
collective potential energy surfaces

 RPA/ QRPA calculations (excited states: surface vibrations
and giant resonances)

Nuclear reactions
» Reaction theory that incorporates relevant degrees of freedom

for weakly bound nuclei, including ab initio approaches
« TDHF / DC-TDHF calculations of heavy-ion reactions



Microscopic theories of nuclear structure

Nuclear Landscape

Ab initio
Configuration Interaction
Density Functional Theory
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No-core shell model

Ref: Navratil, Gueorguiev, Vary, Ormand and Nogga,
Phys. Rev. Lett. 99, 042501 (2007)
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Zirconium isotopes (Z=40), HFB+SLy4 on 2D-grid

Blazkiewicz, Oberacker, Umar & Stoitsov, Phys. Rev. C71, 054321 (2005)
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2n-dripline nucleus %?Zr (Z=40, N=82), HFB on 2-D grid
Blazkiewicz, Oberacker, Umar & Stoitsov, Phys. Rev. C71, 054321 (2005)
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RIA Theory Bluebook (Sep. 2005), calculations by Dobaczewski et al.
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Proton Number

Nuclear ground state deformations (2-D HFB)

Dobaczewski, Stoitsov & Nazarewicz (2004)

arXiv:nucl-th/0404077
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HFB with quadrupole + octupole constraints
H. Goutte, P. Casoli, and J.F. Berger, Nucl. Phys. A734 (2004) 217

238U

microscopic potential energy

surface E(Q,y, Q) for
nuclear fission:

Q,, — elongation
Q,, — mass asymmetry

Notice double-humped fission
barrier in Q,, — direction !

16



S(Ey) [fm4,v'"MeV]

S(E,) [ﬁ114,""MeV]
b
S

o W W B
nh O i O

._.._.
S WD

200

100

50

Continuum quasi-particle linear response theory

for neutron-rich isotopes
Mizuyama, Matsuo & Serizawa, Phys. Rev. C79, 024313 (2009)
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Strength function of isovector (T=1)
quadrupole (L=2) response.

(LM = Landau-Migdal approx.)

Theory yields both low-energy
and high-energy collective vibrations

Skyrme (SkM*) interaction for HFB
mean field, and density-dependent
delta interaction for pairing
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Theoretical road map
Ref: RIA Theory Bluebook (Sep. 2005)

Shell Model
Continuum Shell Model

ab initio
GFMC, NCSM, CCM
NN and
many-nucleon

forces
EFT

Reaction

Theory

Collective Mode's
Algebraic Modes
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Theoretical / computational challenges for the future
Ref: RIA Theory Bluebook (Sep. 2005)

Extend ab initio nuclear structure calculations to medium mass nuclei.

Self-consistent nuclear density functional methods for static
and dynamic problems.

Reaction theory that incorporates relevant degrees of freedom
for weakly bound nuclei, including ab initio approaches.

Isospin degrees of freedom of the density-dependent nuclear
interaction.

Synthesis between nuclear theory and various astrophysical
models to determine the nucleosynthesis in stars.



