Derive N-N interaction potentials
from meson exchange theories
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Most important: 1-pion exchange potential (OPEP)
contributes to spin-isospin (o 1) and tensor-isospin (t 1)
components of Argonne v-18 potential



Experimental p-p and n-p differential cross sections
Ref: W.N. Hess, Rev. Mod. Phys. 30, 368 (1958)
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FiG. 5. Experimental values of the differential neutron-proton
cross section at various energies.



N-N quantum states

L =7x D orbital ang. momentum

(51 +52) spin of N-N pair
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5 %(;1 +,) isospin of N-N pair

Spectroscopic notation: (254 | use S,PD,... for L=0,1,2,...
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Free N-N interaction: Reid soft-core potential (1968)

for some of the reaction channels
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Need for “effective” N-N interaction (in nuclear medium)

Computational reason:

N-N potentials exhibit, for some reaction channels, a
strongly repulsive core (= 4000 MeV) at r = 0.5 fm. Potential
becomes very large, wave function becomes very small.
This is numerically unstable.

Many-body physics reasons:

For free N-N scattering, almost all quantum states are
unoccupied; in a heavy nucleus, however, many quantum
states are occupied and thus “Pauli-blocked” (scattering
into these states is forbidden).

For free N-N scattering, the energy of the N-N pair is
conserved, by for N-N scattering in nuclear medium the
energy of N-N pair is not conserved (energy transfer to
other nucleons).



Derive effective interaction (Bruckner G-matrix)

from Bethe-Goldstone equation
Ref: Ring & Schuck, chapter 4.3.1

G-matrix = free N-N
effective interaction interaction
<ab|G" |cd>=<ab|V |cd> +
| — 1 E
S Z<ab|v|””>E — <m|G* |cd>
2mn>gF —&,—&,+IN
Pauli free N-N single-particle G-matrix =
blocking interaction energies effective interaction

This equation must be solved iteratively; not too hard for infinite nuclear
medium (“nuclear matter”) but fairly difficult for finite nuclei !



Example: tensor components of Reid soft-core N-N interaction
Ref: Sprung and Banerjee, Nucl. Phys. A168, 273 (1971)

solid line: “effective” interaction in nuclear matter, from Bethe-Goldstone eq.
dotted line: free N-N interaction
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Comments on effective N-N interaction

From the numerical results depicted in the last slide we conclude:

* Atdistancesr > 1.0 fm , the free N-N interaction and the effective
Interaction are identical !

* Atdistances r < 1.0 fm, however, the free N-N interaction may become
extremely large (almost singular) while the corresponding effective
N-N interaction is finite everywhere ! This is primarily due to “Pauli
blocking”.

* Therefore, the effective interaction is a better starting point for
numerical calculations, in particular for mean-field theories
(HF, HFB) of heavy nuclei.
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