
# Nuclear chart, "magic" proton and neutron numbers, measured half-life ranges



## NUBASE evaluation: exp. decay modes Audi et al., Nucl. Phys. A 729 (2003) 3-128



# History of radioactivity

Henri Becquerel (1890's) discovers that various uranium salts emit unknown "rays" that penetrate paper and expose photographic plate

✓ Marya Sklodovska ↔ Marie Curie (1896) works with "pitchblende" (mixture of uranium ore and others), isolates two new chemical elements that are highly "ray-producing" (= radioactive):

radium (Z=88), this element is a million times more radioactive than natural uranium, and

polonium (Z=84), named after her home country Poland

# History of radioactivity



Marie Curie won two Nobel prizes: 1903 in physics (radioactivity), with husband Pierre Curie 1911 in chemistry (two new elements, Po and Ra)

Her daughter Irène Joliot-Curie and her son-in-law Frédéric Joliot-Curie also also won Nobel prize, in chemistry (1935) Nuclear decay modes:  $\alpha$  decay (helium-4 emission)

in heavy nuclei, α particles form in nuclear surface region
α particles tunnel through potential barrier formed by
Coulomb + strong nuclear interaction

Example:  $^{238}_{92} U \rightarrow ^{234}_{90} Th + ^{4}_{2} He$ uranium thorium  $\alpha$ 

"parent" nucleus  $(Z,N) \rightarrow$  "daughter" nucleus  $(Z-2,N-2) + \alpha$ Note: total numbers of A, Z, and N conserved in  $\alpha$  decay

## The radioactive decay law

See related notes in section 2.1a

Topics:

decay rate, half-life, mean life, level width activity A(t) of radioactive substance

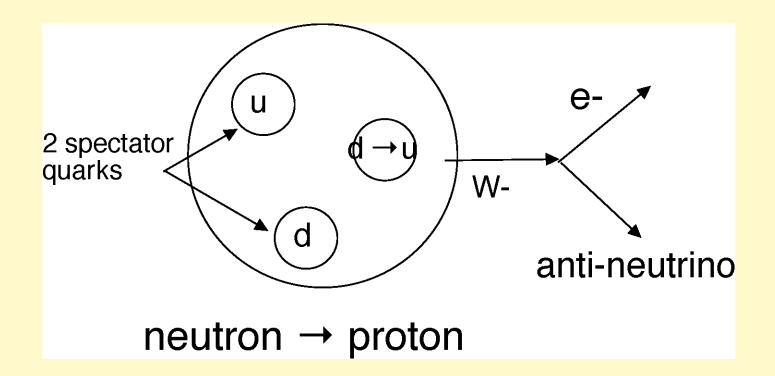
## Theory of α decay: George Gamov (1928) tunneling through a potential barrier



### See related notes in section 2.1a

Nuclear decay modes:  $\beta$ - decay (electron emission) Basic weak interaction decay (note charge conservation): neutron  $\rightarrow$  proton + electron + anti-neutrino

Example:


 $^{234}_{90}$  Th  $\rightarrow ^{234}_{91}$  Pa + e<sup>-</sup> + anti-neutrino thorium protactinium

"parent" nucleus  $(Z,N) \rightarrow$  "daughter" nucleus  $(Z+1,N-1) + \dots$ 

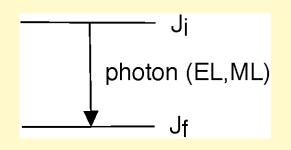
Note: total number of A is conserved in  $\beta$  decay

## $\beta^{-}$ decay: interpretation in terms of quarks and W boson

neutron = (u d d), proton = (u u d) d  $\rightarrow$  u + W<sup>-</sup> charges: -1/3  $\rightarrow$  +2/3 -1



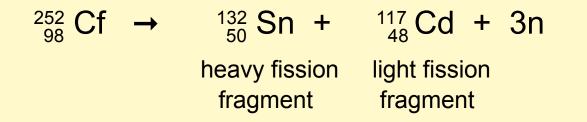
Nuclear decay modes: β<sup>+</sup> decay (positron emission) Basic weak interaction decay (note charge conservation):


proton  $\rightarrow$  neutron + positron + neutrino

# Example: ${}^{13}_{7} \text{N} \rightarrow {}^{13}_{6} \text{C} + e^+ + \text{neutrino}$ nitrogen carbon

"parent" nucleus  $(Z,N) \rightarrow$  "daughter" nucleus  $(Z-1,N+1) + \dots$ 

Note: total number of A is conserved in β<sup>+</sup> decay Practical application: positron emission tomography (PET)


## Nuclear decay modes: gamma decay



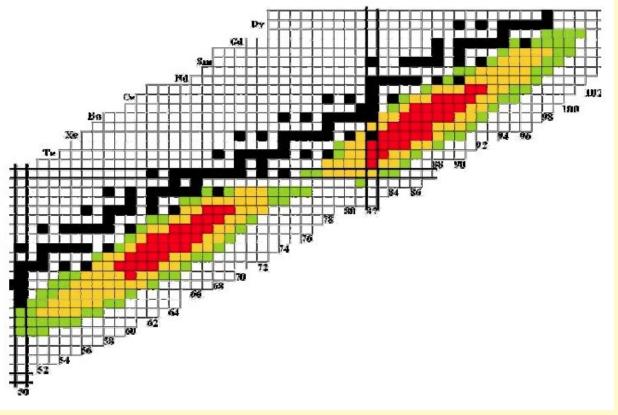
Spontaneous photon emission is explained by quantum electrodynamics (QED). Even in the vacuum state, there are always zero-point vibrations of the electromagnetic fields which couple to the electric charges and currents of the nucleons, thus producing EM radiation.

Classical treatment : J.D. Jackson, Classical Electrodynamics, 3<sup>rd</sup> edition, chapter 9.11 QED treatment (brief summary): Shankar, QM, 2<sup>nd</sup> edition, p. 506-521

Angular momentum selection rules are determined by Clebsch-Gordan Coefficients (Wigner-Eckart theorem, see e.g. Shankar p. 420) spontaneous fission: example Californium-252



Sizable spontaneous fission is observed in heavy transuranic isotopes.


For <sup>252</sup>Cf one finds (Nuclear Wallet Cards, BNL, 2005):

α-decay probability = 96.91 % spontaneous fission probability = 3.09 %

Total half-life (mostly  $\alpha$ ) = 2.645 years Spontaneous fission half life  $\approx$  100 years

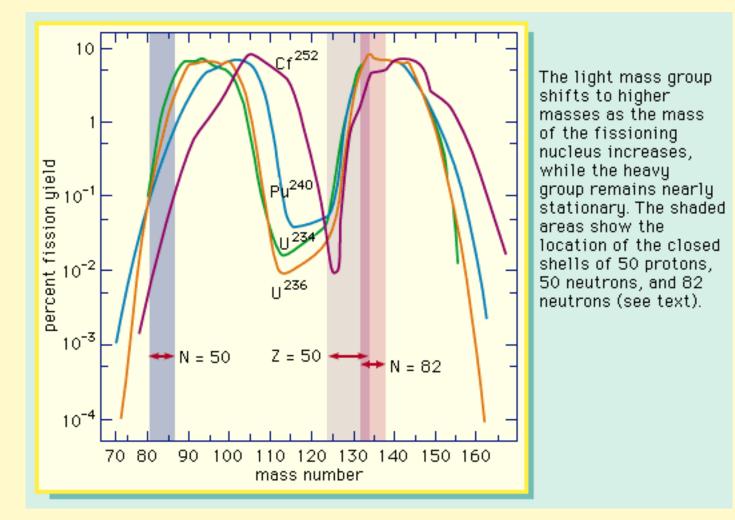
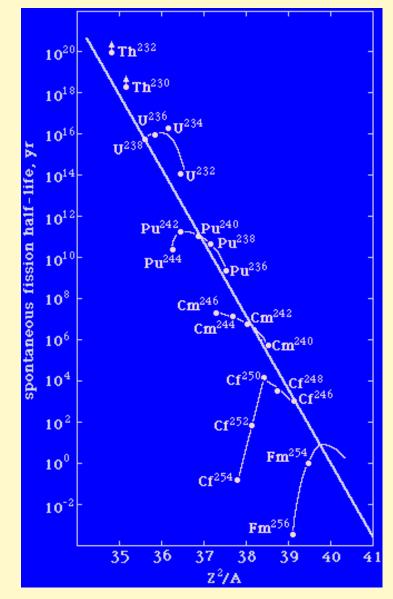

# **Fission products from spontaneous fission of** <sup>252</sup>**Cf** http://www.phy.anl.gov/atlas/caribu/Cf252\_upgrade\_proposal\_final\_Rev4.pdf

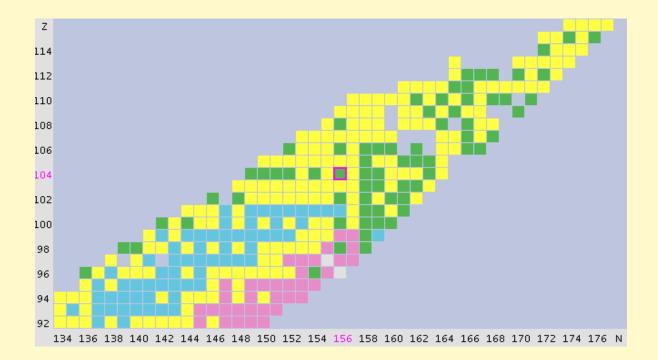
Figure 6. Distribution of the fission products from the spontaneous fission of <sup>252</sup>Cf. Both peaks are centered on heavier mass than the equivalent peaks in uranium fission.




## **Fission mass distributions**

spontaneous fission of <sup>252</sup>Cf; thermal neutron fission of U and Pu Ref: A.C. Wahl, Symposium on Physics and Chemistry of Fission (1965), IAEA, Vienna




## spontaneous fission: half-lives



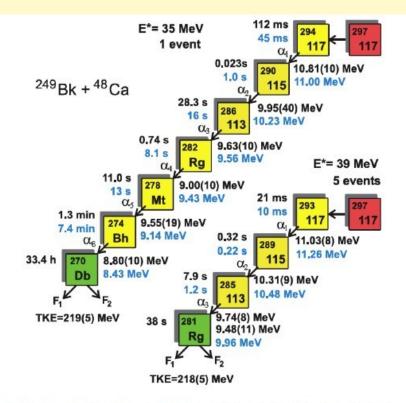
Spontaneous fission half-lives of actinide isotopes vary by 22 orders of magnitude.

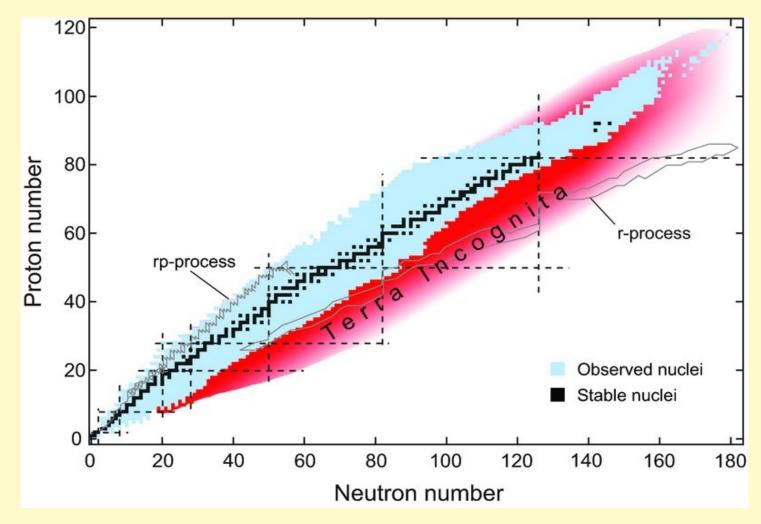
For <sup>252</sup>Cf one obtains about 100 years.

### Second frontier: superheavy elements in heavy-ion fusion reactions Ref: National Nuclear Data Center, Brookhaven http://www.nndc.bnl.gov/index.jsp



Exp. discovery of superheavy element Z=117 at Dubna (Russia) Vanderbilt physicists involved: Professors Hamilton and Ramayya Phys. Rev. Lett. 104, 142502 (2010)





FIG. 1 (color). Observed decay chains interpreted as originating from the isotopes A = 294 (single event) and A = 293(average of five events) of the new element Z = 117. The deduced and predicted [9] lifetimes ( $\tau = T_{1/2}/\ln 2$ ) and  $\alpha$ -particle energies are shown in black and blue, respectively.

The isotopes <sup>293</sup>117 and <sup>294</sup>117 were produced in fusion reactions between <sup>48</sup>Ca and <sup>249</sup><sub>97</sub>Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z  $\geq$ 111, validating the concept of the long sought island of enhanced stability for superheavy nuclei.

## Nuclear decay modes: exotic

Proton radioactivity: spontaneous p and 2p emission at proton dripline Neutron radioactivity: spontaneous n and 2n emission at neutron dripline "cluster emission" of heavier ions, e.g. <sup>14</sup>C, <sup>24</sup>Ne, …

#### Nuclear chart and the frontier of neutron-rich nuclei Ref: Isotope Science Facility proposal, MSU (Nov. 2006)



Exp. data: neutron dripline for light nuclei (up to Z=8) Ref: RIA Physics White Paper, Raleigh, NC conference (2000)

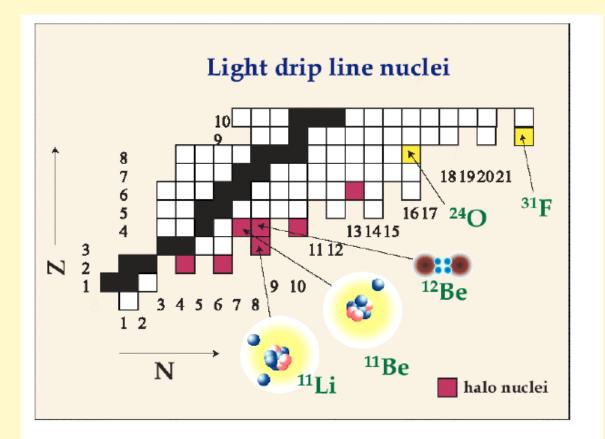



Figure 5: The part of the (N,Z) chart for the lightest nuclei. The neutron drip line has been reached only up to oxygen (Z = 8) where the heaviest particle-stable isotope has 16 neutrons. Interestingly, the heaviest isotope of flourine (Z=9) known has 22 neutrons. That is, one additional proton binds at least six neutrons. Known halo nuclei are marked by red squares. A very elongated "dimer" configuration in <sup>12</sup>Be has recently been found at higher excitation energies.