Radioactive ion beam production

2 methods:

Isotope Separation On-Line (ISOL) method

ISAC-TRIUMF in Canada REX-ISOLDE at CERN SPIRAL2 at GANIL in France SPES in Italy EURISOL facility (under construction)

In-flight projectile fragmentation

FRIB facility at MSU (under construction) RIBF at RIKEN near Tokyo (Japan) FAIR at GSI (Germany)

ISOL method

basic principle:

proton or light ion beams hit thick target to produce radioisotopes.

a) use spallation reaction: heavy nucleus emits large number of nucleons after being hit by high-energy particle; reaction product is highly radioactive
b) use proton-induced fission of U (or spontaneous fission of ²⁵²Cf)

Target is heated to high temperature; the produced radioisotopes are extracted via gaseous diffusion, mass separated, and then post-accelerated in heavy-ion accelerator.

advantage:

potential for high-intensity RIB beams, excellent beam quality

In-flight projectile fragmentation method

basic principle:

collision of two nuclei at relativistic energies produces highly unstable reaction fragments (radioactive) which are then slowed down by collisions in a gas cell.

advantage:

allows for production of short-lived RIBs

FRIB Isotope Production Scheme

• projectile fragmentation or fission (Coulomb breakup, transfer, ...)

Radioactive Ion Beam (RIB) facilities in other countries

- RIBF at RIKEN (major new facility near Tokyo, Japan)
- FAIR (major new facility at GSI Darmstadt, Germany)
- SPIRAL2 at GANIL (major upgrade in France)
- ISOLDE upgrade (CERN, Switzerland)
- ISAC at TRIUMF (nuclear astrophysics facility, Vancouver, Canada)
- Radioactive Ion Beam Line (RIBLL) in Lanzhou, China

Status of GANIL/SPIRAL2 facility

M. Lewitowicz GANIL, CEA/DSM-CNRS/IN2P3, Caen, France

on behalf of GANIL, SPIRAL2 Project Group & Physics Collaborations

See also related NN2012 talks of:

Michael Bender, Abdou Chbihi, Fanny Farget, Francesca Gulminelli, Wolfram Korten, Paola Marini, Marie-France Rivet & Cedric Simenel

www.ganil-spiral2.eu

SPIRAL2 under construction

Phase 1: High intensity stable beams + Experimental rooms (S³ + NFS)

Phase 2: High-intensity low-energy (DESIR) & post-accelerated Radioactive Ion Beam facility

Nuclear structure

Present and future of the RIKEN RI Beam Factory (RIBF)

-- the new facility: 5 years since the first beam from the new facility

T. Motobayashi (RIKEN Nishina Center)

* v/c ~ 0.3-0.6

"fast"* RI beams by **projectile fragmentation and projectile fission** Nuclei farther from the stability valley, hoping

5 years of the new facility

improvement of primary beams (intensity and stability)

extension in the nuclear chart

- highlights
- construction of experimental devices

Near-term future Possible upgrades

RIBF – a new generation RIB facility in operation with world highest capability of producing exotic nuclei in coming years!

Radioactive Ion Beam (RIB) facilities in the U.S.

- Argonne Tandem Linac Accelerator System (ATLAS) at Argonne National Lab
- National Superconducting Cyclotron Lab (NSCL) at Michigan State University
- Facility for Rare Isotope Beams (FRIB), under construction at Michigan State University

CARIBU: A new facility for the study of neutronrich isotopes

Guy Savard Argonne National Laboratory & University of Chicago

11th International Conference on nucleus-nucleus collisions June 1 2012, San Antonio, Texas CARIBU upgrade at ATLAS (Argonne National Lab)

http://www.phy.anl.gov/atlas/caribu/Cf252_upgrade_proposal_final_Rev4.pdf

CARIBU = CAlifornium Rare Ion Breeder Upgrade

Basic idea:

Uses a 1 Curie ²⁵²Cf spontaneous fission source. The charge and mass distribution is very broad (see next slide). Use these fission fragments for accelerated RIBs.

The r-process path

r-process:

- Process known to exist
- Exact site unknown
- Path critically depends on nuclear properties of neutron-rich nuclei:
 - mass
 - lifetime
 - β -delayed neutrons
 - fissionability

Efficient techniques exist to obtain this information but the required beams are missing in most of this region of the chart of nuclides.

CARIBU gas catcher: transforms fission recoils into a beam with good optical properties

- Based on smaller devices developed at ANL
 - Radioactive recoils stop in sub-ppb level impurity Helium gas
 - Radioactive ion transport by RF field + DC field + gas flow
 - Stainless steel and ceramics construction (1.2 m length, 50 cm inner diameter)
 - Fast and essentially universally applicable
 - Extraction in 2 RFQ sections with μRFQs for differential pumping

Extracted isotope yield at low energy (50 keV)

CARIBU beams reaccelerated to Gammasphere

NN2012, San Antonio, June 1, 2012

Status

CARIBU facility is operational

- First RIB facility based on a gas catcher ... it works
- Over 70 different neutron-rich radioactive isotope species have been extracted and used for experiments in the last year
- Low-energy program in full swing with experiments approved by PAC last January taking data
- Reaccelerated beam program initiated at low intensity
- "1 Ci" source will replace the current 50 mCi source this summer. Combined with RFQ installation this fall, will yield gains of 10 to 40 in intensity for low-energy and reaccelerated beams.

PAC in fall 2012 will accept proposals for reaccelerated neutron-rich beams at energies between 3-15 MeV/u

Facility for Rare Isotope Beams (FRIB)

Features:

- two ECR (= electron cyclotron resonance) ion sources
- superconducting heavy-ion driver linear accelerator uranium beams up to 200 MeV/nucleon proton beams up to 600 MeV/nucleon
- one in-flight production target
- space to add up to two ISOL targets
- radioactive ion beam linear post-accelerator

Facility for Rare Isotope Beams: Status and Capabilities

Brad Sherrill for the FRIB Laboratory and Project Team 1 June 2012

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Introduction: FRIB Scientific Program

Properties of nuclei

- Develop a predictive model of nuclei and their interactions
- Many-body quantum problem: intellectual overlap to mesoscopic science, quantum dots, atomic clusters, etc.

Nuclear Structure

- The limits of elements and isotopes

Astrophysical processes

- Origin of the elements in the cosmo
- Explosive environments: novae, supernovae, X-ray bursts …
- Properties of neutron stars

Tests of fundamental syn

 Effects of symmetry violations are amplified in certain nuclei

ø

Societal applications and

Bio-medicine, energy, material sciences, national security

Nuclear

Astrophysics

Isotopes for Society

Tests of

Fundamental Symmetries

The Reach of FRIB

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Sherrill NN2012

Overview of the FRIB Facility

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Sherrill NN2012

FRIB Layout

Driver Linear Accelerator

Michigan State University

Isotope Production Area Target and Fragment Separator

Overview FRIB Reaccelerators, and Experimental Stations

- Fast, stopped, and reaccelerated beam capabilities (unique)
- ReA12 experimental hall is ready for occupancy

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Sherrill NN2012

Major new gamma ray detectors in the U.S.

GRETA = Gamma Ray Energy Tracking Array GRETINA = smaller version of GRETA GRETINA consists of 28 highly segmented hyper-pure germanium crystals. Each crystal is segmented into 36 electrically isolated elements.

Gretina Website http://grfs1.lbl.gov/