Time-dependent Hartree-Fock (TDHF) application: fusion, quasifission, and deep-inelastic reactions

- Fusion of exotic neutron-rich nuclei (Radioactive Ion Beam Facilities)
- Fusion leading to formation of superheavy elements Z=117,119 (experiments and Dubna and GSI-TASCA) the main competing process is quasifission

TDHF Equations

- Equations of motion obtained from variation of the action $S = \int_{t_1}^{t_2} dt \langle \Phi(t) | H - i\hbar \partial_t | \Phi(t) \rangle \quad \text{with} \quad H = \sum_i^A t_i + \sum_{i < j}^A v_{ij}$
- Many-body state is a single time-dependent Slater determinant

$$\Phi(r_1...r_A;t) = \frac{1}{\sqrt{A!}} det |\phi_\lambda(r_i,t)|$$

TDHF equations for single-particle states

$$i\hbar \frac{\partial \phi_{\lambda}}{\partial t} = h(\phi_{\mu})\phi_{\lambda}$$

Skyrme energy functional is given by the 3D integral

$$E = \int d^3r \ H\left(\rho, \tau, \vec{j}, \vec{s}, \vec{T}, J_{\mu\nu}; \vec{r}\right)$$

Nuclear chart and the frontier of neutron-rich nuclei Ref: Isotope Science Facility proposal, MSU (Nov. 2006)

Heavy-ion reactions as function of impact parameter b

3D-TDHF: $^{48}Ca + ^{132}Sn at E_{cm} = 130 MeV$

The following two slides show TDHF calculations of a heavy-ion reaction between two nuclei; both of these are spherical in their ground state. ⁴⁸Ca is neutron-rich but stable, whereas ¹³²Sn is very neutron-rich and unstable against β - decay (half-life = 39.7 s). Reaction studied experimentally at ORNL.

The plots show contours of the mass density distribution of the system (in the collision plane) as a function of time, as predicted by TDHF.

We observe that at small impact parameter (up to b=4.45 fm), the two nuclei fuse to form a strongly deformed shape isomer of ¹⁸⁰Yb.

At larger impact parameter (b>4.6 fm), the nuclei stick together only briefly and then disintegrate again. Some mass and charge transfer occurs and the fragments are highly excited. This is called a "deep-inelastic collision".

The plots show collective rotation, surface vibrations and density oscillations (giant resonances) during the collision.

⁴⁸Ca + ¹³²Sn, E_{cm} = 130 MeV, b = 4.45 fm (fusion) TDHF, SLy4 interaction, 3-D lattice (50*40*30 points)

⁴⁸Ca + ¹³²Sn, E_{cm} = 130 MeV, b = 4.6 fm (deep-inelastic) TDHF, SLy4 interaction, 3-D lattice (50*42*30 points)

exp. data (HRIBF): J.J. Kolata, A. Roberts, A.M. Howard, D. Shapira, J.F. Liang, C.J. Gross, R.L. Varner, Z. Kohley, A.N. Villano, H. Amro, W. Loveland, and E. Chavez, Phys. Rev. C 85, 054603 (2012)

The frontier of superheavy nuclei

Synthesis of superheavy nuclei

Y. Oganessian, Nuclear Physics News Vol. 23, No. 1, 2013

Fission barrier heights B_f calculated in the macroscopic-microscopic model (Möller & Sierk).

cold fusion

Umar, Oberacker, Maruhn, and Reinhard, PRC 81, 064607 (2010)

Quasifission and fusion-fission

⁴⁸Ca+²⁴⁹Bk, E_{cm}=218 MeV impact parameter b=0 fm, fusion (Z=117, A=297)

⁴⁸Ca+²⁴⁹Bk, E_{cm}=218 MeV impact parameter b=2 fm, quasifission

⁴⁸Ca+²⁴⁹Bk, E_{cm}=218 MeV (preliminary, not yet published!)

