Atomic Hartree-Fock calculations: radial densities
of noble gas atoms reveal shell structure
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Improved visualization of atomic shell structure
suggested topic for term paper!

The following paper describes electron localization in atoms and molecules, based
on the pair correlation function for fermions:

A. D. Becke and K. E. Edgecombe, J. Chem. Phys., Vol. 92. No.9 (1990), p. 5397-5403



Multiconfiguration
Hartree-Fock (MCHF)

Many-body wave function
= superposition of
several hundred
Slater determinants

Textbook:
Computational atomic structure: an MCHF approach

Charlotte Froese Fischer (Vanderbilt University, Prof. Emerita)
Tomas Brage (Lund University, Sweden)
Per Jonsson (Lund University, Sweden)



Atomic physics: relativistic effects
MCDF (multiconfiguration Dirac-Fock)

Instead of solving the many-body non-relativistic Schrodinger equation,
one has to solve the many-body Dirac equation for spin-1/2 fermions.

This is important for heavier atoms, because the inner-shell electrons
move at relativistic speeds.



Atomic structure calculations (MCHF / MCDF)

Calculate atomic properties
energy levels, binding energies, transition probabilities, lifetimes,
hyperfine structure, isotope shifts, and photo-ionization cross sections.

Theoretical and computational approach

. (multiconfiguration Hartree-Fock): non-relativistic theory, add

low-order relativistic corrections

. (multiconfiguration Dirac-Fock): fully relativistic Dirac-Fock theory
including Breit and quantum electrodynamics corrections.

. , use for finding a few
selected eigenvalues of the sparse symmetric interaction matrix.
Algorithm relies primarily on multiplication,
parallelization using (Message Passing Interface)

Applications

* plasma diagnostics (properties of ionized atoms)

* astrophysics (iron abundance in supernovae - information on
nucleosynthesis and galactic chemical evolution).



MCHF for beryllium atom; comparison with experiment

Rydberg seiies with perturber 9

Table 5.9. Frozen-core MCHF results for binding energies (in em™") for members of the
2snd °D Rydberg series of beryilium The limit energy (E = —14.2773948 au) is taken
as from a Hartree-Fock calculation for 25 %¢ of Be*,

Binding energies

Term Hydrogen* HF MCHF  Experiment
3d 121921 124533 131424 13138.35°
4d 6858.0 6996.9 72515  7250.41°
S5d  4389.1 4466.2 45890  4588.31°
6d 3048.0 3094.3  3163.1  3162.57°
7d 2239.4 22891 23114 2311.17¢
8d 1714.5 17347 1762.8  1762.74¢
9d 1354.7 1369.0  1388.5  1389.5°

10d 1097.3 1107.8  1121.9  (122.1°

11d %06.8 914.8 925.4 924.0°

*Hydrogenic, 1/2r%, value.
"From Johansson (1962).
“From Holmstrom and Johansson (1965).



Atomic transitions: MCDF theory vs. experiment
Prof. C.F. Fischer (Vanderbilt): NERSC Annual report (1998)
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Comparison of
computationally predicted
atomic transition data with
experiment for four
electron ions of nuclear
charge Z, plotted against
1/Z. For the top graph,
relativistic effects are
small for Z < 20, but they
are crucial for all Z in the
bottom graph.
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