Cooper pair formation in atomic nuclei

Experiments show that all nuclei with even number of protons and even number of neutrons have a ground state with total angular momentum J=0.

Interpretation: this suggests a pairwise coupling of nucleon angular momenta to j(pair)=0.

$$\int_{\text{nucleon}} s j = l + s \qquad j(pair) = j_1 + j_2 = 0$$

Nuclear mean field theory (Hartree Fock) does not describe this pairing phenomenon. We need to go beyond mean field physics and consider the residual interaction between nucleons.

Nuclear mean field and residual interaction

original Hamiltonian $H = T^{(1)} + V^{(2)} + V^{(3)}$

add and subtract a 1-body "mean field potential" $V^{(1)}$ (derive from Hartree-Fock theory)

$$H = T^{(1)} + V^{(1)} + V^{(2)} + V^{(3)} - V^{(1)}$$

regroup and separate terms

$$H = H_{mf} + H_{res}$$
$$H_{mf} = T^{(1)} + V^{(1)}$$
$$H_{res} = V^{(2)} + V^{(3)} - V^{(1)}$$

complete many-body Hamiltonian mean field Hamiltonian, 1-body central field residual interaction, "small" Nuclear mean field and residual interaction textbook by Ring & Schuck, chapters 4 and 6

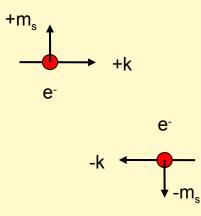
residual interaction $H_{res} = V^{(2)} + V^{(3)} - V^{(1)}$

long-range part causes particle-hole (p-h) correlations: contributes to nuclear deformation (quadrupole-quadrupole part of residual interaction)

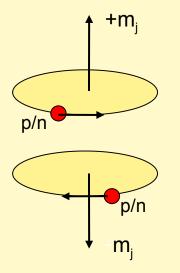
short-range part causes particle-particle (p-p) correlations: causes Cooper pair formation, pairing vibrations

Cooper pair formation

Condensed matter physics: electron-phonon interaction



Nuclear physics: short-range residual interaction



Short-range residual interaction: pairing energy of 2 nucleons in the same j-shell

Ref: Fetter & Walecka, p. 515-519

Approximate short-range interaction by attractive delta function

 $V(1,2) = -G \ \delta(\vec{r_1} - \vec{r_2})$

This simple model explains qualitatively the experimental fact that all even-even nuclei have ground state angular momentum J = 0. Assume 2 identical particles in the same j-shell; binding energy of pair is largest for J (pair) = 0.

BCS pairing model for nuclei

Ref: Fetter and Walecka, p. 337

Notation:
$$k = |j, +m_j > -k = |j, -m_j > \time-reversed state$$

BCS model assumes the following structure of a paired ground state (based on Cooper's model for a single pair)

$$|BCS> = \prod_{k>0}^{\infty} (u_k + v_k \hat{c}_k^{\dagger} \hat{c}_{-k}^{\dagger}) |0>$$

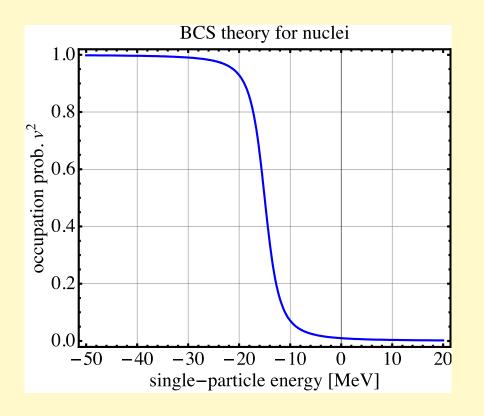
 $v_k^2 = probability$ that single-particle levels (k, -k) are occupied

 $u_k^2 = \text{probability that single-particle levels (k, -k) are empty}$

BCS pairing for nuclei: occupation probability for states (k,-k)

Ref: Fetter & Walecka, p. 334

$$v_k^2 = \frac{1}{2} \left[1 - \frac{(\epsilon_k - \lambda)}{\sqrt{(\epsilon_k - \lambda)^2 + \Delta^2}} \right]$$



Pairing forces lead to fractional occupation numbers. The Fermi surface is no longer sharp, but becomes "soft".

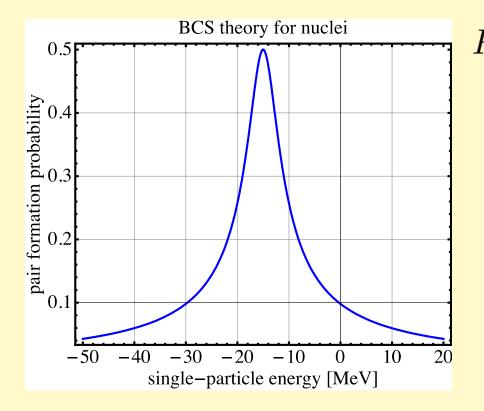
 ϵ_k = single-particle energy

 λ = -15 MeV (generalized Fermi energy)

 Δ = 3 MeV (pairing gap, determines width of distribution)

BCS pairing for nuclei: spectral distribution of pairing density

Ref: Fetter and Walecka, p. 337



$$P_k = \langle BCS | \hat{c}_k^{\dagger} \hat{c}_{-k}^{\dagger} | BCS \rangle$$
$$= v_k u_k = v_k \sqrt{1 - v_k^2}$$

 λ = -15 MeV (generalized Fermi energy)

Note: pair formation is concentrated in the vicinity of the Fermi level BCS pairing Hamiltonian and particle density Ref: Ring & Schuck, p. 232

$$\hat{H} = \sum_{k} \epsilon_{k} \ \hat{c}_{k}^{\dagger} \ \hat{c}_{k} - G \sum_{k,k'>0} \hat{c}_{k}^{\dagger} \ \hat{c}_{-k'} \ \hat{c}_{-k'} \ \hat{c}_{k'}$$

Single-particle energies may be obtained from HF theory Constant pairing strength adjusted to exp. data

BCS theory shows that HF particle density

$$\label{eq:phi} \begin{split} \rho^{HF}(\vec{r},\sigma_z) &= \sum_{k=1}^A |\phi_k(\vec{r},\sigma_z)|^2 \\ \text{should be replaced by } \rho^{HF+BCS}(\vec{r},\sigma_z) &= \sum_{k=1}^\infty v_k^2 \; |\phi_k(\vec{r},\sigma_z)|^2 \end{split}$$