Department of Physics and Astronomy


        HOME         Course Policy         Syllabus         Lecture materials

        Bibliography         Termpaper         Grades         Prof. Umar's Website


Syllabus - Physics 8140

1. Introduction

        Practical applications of nuclear physics, course overview,
        nuclear accelerators, nuclear units and constants of nature,
        de Broglie wavelength of electron and heavy-ion beams


2. Basic experimental facts and theoretical concepts

From quarks to nuclei

Basic experimental facts
        nuclear chart and decay modes
        nuclear densities and binding energies
        nuclear astrophysics
        Radioactive Ion Beam (RIB) facilities

Basic theoretical concepts
        Q-value formalism for nuclear reactions, with applications
        Nuclear many-body Hamiltonian, quantum systems of identical particles,
        Slater determinants, spin and isospin formalism, free nuclear Fermi gas


3. Phenomenological models

        Single-particle motion: spherical and deformed shell models

        Collective motion: surface vibrations (including fission),
        rotations, and giant resonances


4. Microscopic nuclear structure and reaction theories

        The nucleon-nucleon (N-N) interaction
        Nuclear many-body theory in "occupation number representation"
        Brief discussion of "ab initio" calculations for light nuclei

        Ground state mean field theory: static and constrained Hartree-Fock (HF)
        Beyond the mean field: residual interactions
        BCS pairing model for nuclei, HF + BCS calculations
        Self-consistent mean field theory with pairing: Hartree-Fock-Bogoliubov (HFB)
        Random Phase Approximation (RPA): theory of collective excitations

        Time-dependent Hartree-Fock (TDHF): dynamic theory of nuclear reactions
        DC-TDHF: heavy-ion potentials and sub-barrier fusion

        Summary and Outlook: Glimpses of the Future


Last update: November, 2021
Sait Umar
Vanderbilt University